系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 753-767.doi: 10.12305/j.issn.1001-506X.2025.03.08

• 传感器与信号处理 • 上一篇    

强化散射特征的机载SAR实传图像盲超分辨重建

贾钰嘉, 张思乾, 唐涛, 匡纲要   

  1. 国防科技大学电子科学学院, 湖南 长沙 410073
  • 收稿日期:2023-05-25 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 张思乾
  • 作者简介:贾钰嘉(1999—), 女, 硕士研究生, 主要研究方向为SAR图像智能解译、图像质量提升
    张思乾(1987—), 女, 副教授, 博士, 主要研究方向为SAR信号与图像处理、目标特性与建模、目标智能识别
    唐涛(1980—), 男, 副教授, 博士, 主要研究方向为SAR图像目标特征提取、目标判读识别技术
    匡纲要(1966—), 男, 教授, 博士, 主要研究方向为遥感图像智能解译、SAR图像目标检测与识别

Blind super-resolution reconstruction of airborne SAR real-time transmission images with enhanced scattering features

Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG   

  1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2023-05-25 Online:2025-03-28 Published:2025-04-18
  • Contact: Siqian ZHANG

摘要:

现有超分辨方法大多基于理想退化模型且易导致强散射信息均值化, 不适用于机载合成孔径雷达(synthetic aperture radar, SAR)实传图像的超分辨重建。针对该问题, 在机载SAR实传图像和精细成像图像之间建立了一个盲超分辨重建网络。首先, 采用生成对抗网络学习两个图像域之间的映射关系。其次, 通过注意力机制引导网络关注强散射区域。然后, 利用感知循环一致性损失保留图像纹理特征。最后, 在实测机载SAR数据集上验证了算法有效性, 重建结果的人类视觉系统信噪比和辐射分辨率分别提升了约30%和20%。特征分析及可视化表明, 所提方法提高了图像质量且重建出清晰的强散射特征。

关键词: 机载合成孔径雷达, 实传图像, 强化散射特征, 盲超分辨重建, 生成对抗网络

Abstract:

Most of the existing super-resolution methods are based on the ideal degradation models and tend to lead to the averaging effect of strong scattering information, which is not suitable for the super-resolution reconstruction of airborne synthetic aperture radar (SAR) real-time transmission images. To address this issue, a blind super-resolution reconstruction network is constructed between airborne SAR real-time transmission images and fine imaging images. Firstly, a generative adversarial network is used to learn the mapping relationship between two image domains. Secondly, an attention mechanism is used to guide the network to focus on strong scattering areas. Then, perceptual cycle consistency loss is utilized to further preserve the image texture features. Finally, the effectiveness of the algorithm is verified on the measured airborne SAR datasets, and the human visual system signal-to-noise ratio and radiation resolution of the reconstructed results are improved by about 30% and 20%, respectively. Feature analysis and visualization indicate that the proposed method can improve image quality and reconstruct clear strong scattering features.

Key words: airborne synthetic aperture radar (SAR), real-time transmission image, enhanced scattering feature, blind super-resolution reconstruction, generative adversarial network (GAN)

中图分类号: