系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2629-2640.doi: 10.12305/j.issn.1001-506X.2024.08.11
• 传感器与信号处理 • 上一篇
张明龙1, 吴雨林1, 魏文强1, 沈园杰1, 郭世盛1,2, 崔国龙1,2,*
收稿日期:
2023-04-14
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
崔国龙
作者简介:
张明龙(2000—), 男, 硕士研究生, 主要研究方向为阵列信号处理基金资助:
Minglong ZHANG1, Yulin WU1, Wenqiang WEI1, Yuanjie SHEN1, Shisheng GUO1,2, Guolong CUI1,2,*
Received:
2023-04-14
Online:
2024-07-25
Published:
2024-08-07
Contact:
Guolong CUI
摘要:
级联毫米波雷达将多个射频芯片进行级联, 可实现大规模多输入多输出(multiple-input multiple-output, MIMO)天线阵列。然而, 现有毫米波雷达的测角方法存在精确度不足、旁瓣过高等问题。对此, 提出一种基于稀疏矩阵填充的级联毫米波雷达高分辨测角方法。首先, 建立级联毫米波雷达二维稀疏阵列的阵列信号模型。然后, 将该阵列的单快拍信号构造为低秩汉克尔(Hankel)矩阵, 使用加权非精确增广拉格朗日乘子法进行稀疏矩阵填充, 并将填充后的矩阵转化为均匀虚拟阵列的单快拍信号。最后, 使用常规波束形成(conventional beamforming, CBF)方法估计目标角度信息并进行配对。仿真和实测实验结果表明, 所提方法能够精确地估计目标角度信息, 并有效抑制峰值旁瓣电平。
中图分类号:
张明龙, 吴雨林, 魏文强, 沈园杰, 郭世盛, 崔国龙. 基于稀疏矩阵填充的级联毫米波雷达高分辨测角方法[J]. 系统工程与电子技术, 2024, 46(8): 2629-2640.
Minglong ZHANG, Yulin WU, Wenqiang WEI, Yuanjie SHEN, Shisheng GUO, Guolong CUI. High resolution angle measurement method for cascaded millimeter wave radar based on sparse matrix completion[J]. Systems Engineering and Electronics, 2024, 46(8): 2629-2640.
1 |
SUN S Q , PETROPULU A P , POOR H V . MIMO radar for advanced driver-assistance systems and autonomous driving: advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37 (4): 98- 117.
doi: 10.1109/MSP.2020.2978507 |
2 |
HAKOBYAN G , YANG B . High-performance automotive radar: a review of signal processing algorithms and modulation schemes[J]. IEEE Signal Processing Magazine, 2019, 36 (5): 32- 44.
doi: 10.1109/MSP.2019.2911722 |
3 | 洪伟, 余超, 陈继新, 等. 毫米波与太赫兹技术[J]. 中国科学: 信息科学, 2016, 46 (8): 1086- 1107. |
HONG W , YU C , CHEN J X , et al. Millimeter wave and terahertz technology[J]. Scientia Sinica Informationis, 2016, 46 (8): 1086- 1107. | |
4 |
PATOLE S M , TORLAK M , WANG D , et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34 (2): 22- 35.
doi: 10.1109/MSP.2016.2628914 |
5 |
WALDSCHMIDT C , HASCH J , MENZEL W . Automotive radar-from first efforts to future systems[J]. IEEE Journal of Microwaves, 2021, 1 (1): 135- 148.
doi: 10.1109/JMW.2020.3033616 |
6 | WANG Z G, LI W H, PENG H L, et al. The development of compact patch antenna array with high angular resolution for 77 GHz FMCW radar applications[C]//Proc. of the IEEE Electrical Design of Advanced Packaging and Systems, 2021. |
7 | SZALAY Z, NAGY L. Target modeling, antenna array design and conventional beamforming algorithms for radar target DOA estimation[C]//Proc. of the 17th International Conference on Transparent Optical Networks, 2015. |
8 | 王平. 汽车毫米波雷达目标DOA估计研究[D]. 成都: 电子科技大学, 2021. |
WANG P. Research on target doa estimation of automotive millimeter wave radar[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
9 |
CAPON J . High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57 (8): 1408- 1418.
doi: 10.1109/PROC.1969.7278 |
48 |
FAZEL M , PONG T K , SUN D F , et al. Hankel matrix rank minimization with applications to system identification and realization[J]. SIAM Journal on Matrix Analysis and Applications, 2013, 34 (3): 946- 977.
doi: 10.1137/110853996 |
10 |
SCHMIDT R . Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280.
doi: 10.1109/TAP.1986.1143830 |
11 |
DONG Y Y , DONG C X , LIU W , et al. 2-D DOA estimation for L-shaped array with array aperture and snapshots extension techniques[J]. IEEE Signal Processing Letters, 2017, 24 (4): 495- 499.
doi: 10.1109/LSP.2017.2676124 |
12 |
ROBERTS W , STOICA P , LI J , et al. Iterative adaptive approaches to MIMO radar imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (1): 5- 20.
doi: 10.1109/JSTSP.2009.2038964 |
13 | FORTUNATI S, GRASSO R, GINI F, et al. Single-snapshot DOA estimation using compressed sensing[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014. |
14 | 赵佳楠. 车载毫米波雷达目标方位估计与识别技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
ZHAO J N. Research on target azimuth estimation and recognition technology of automotive millimeter wave radar[D]. Harbin: Harbin Institute of Technology, 2021. | |
15 |
SUN W Z , SO H C , CHEN Y , et al. Approximate subspace-based iterative adaptive approach for fast two-dimensional spectral estimation[J]. IEEE Trans. on Signal Processing, 2014, 62 (12): 3220- 3231.
doi: 10.1109/TSP.2014.2320460 |
16 | ROOS F, HUGLER P, TORRES L L T, et al. Compressed sensing based single snapshot DOA estimation for sparse MIMO radar arrays[C]//Proc. of the 12th German Microwave Conference, 2019: 75-78. |
17 | ANNALURU R S, MAZHER K U, HEATH R W. Deep learning based range and DOA estimation using low resolution FMCW radars[C]//Proc. of the IEEE Statistical Signal Processing Workshop, 2021: 366-370. |
18 | CHENG Y W, SU J R, CHEN H Y, et al. A new automotive radar 4D point clouds detector by using deep learning[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 8398-8402. |
19 |
郑晶月, 吴佩仑, 陈家辉, 等. 车载毫米波雷达多径假目标分析与消除方法[J]. 系统工程与电子技术, 2024, 46 (1): 88- 96.
doi: 10.12305/j.issn.1001-506X.2024.01.10 |
ZHENG J Y , WU P L , CHEN J H , et al. Multipath false target analysis and elimination for automotive millimeter wave radar[J]. Systems Engineering and Electronics, 2024, 46 (1): 88- 96.
doi: 10.12305/j.issn.1001-506X.2024.01.10 |
|
20 | GAO X Y, XING G B, ROY S, et al. Experiments with mmwave automotive radar test-bed[C]//Proc. of the 53rd Asilomar Conference on Signals, Systems, and Computers, 2019. |
21 |
SANG T H , CHIEN F T , CHANG C C , et al. DOA estimation for FMCW radar by 3D-CNN[J]. Sensors, 2021, 21 (16): 5319.
doi: 10.3390/s21165319 |
22 | GAO X Y, ROY S, XING G B, et al. Perception through 2D-MIMO FMCW automotive radar under adverse weather[C]//Proc. of the IEEE International Conference on Autonomous Systems, 2021. |
23 | YANIK M E, WANG D, TORLAK M. 3-D MIMO-SAR imaging using multi-chip cascaded millimeter-wave sensors[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2019. |
24 |
KITAMURA T , SUWA K . Doppler division multiplexed multiple-input multiple-output imaging using cascaded millimeter-wave radars[J]. IEEE Trans. on Microwave Theory and Techniques, 2022, 70 (3): 1571- 1581.
doi: 10.1109/TMTT.2021.3123129 |
25 | ZHAI X, JIN G, CAI Z R, et al. Performance analysis of DOA estimation for texas instruments mmwave radar sensors[C]//Proc. of the Global Reliability and Prognostics and Health Mana-gement, 2022: 1-6. |
26 |
WEI W Q , LIU R T , YU X X , et al. Fast single-snapshot DOA estimation of coherent sources for distributed mmwave radar system[J]. IEEE Tran. on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (8): 3615- 3619.
doi: 10.1109/TCSII.2022.3168565 |
27 | CORREAS-SERRANO A, GONZALEZ-HUICI M A. Experimental evaluation of compressive sensing for DOA estimation in automotive radar[C]//Proc. of the 19th International Radar Symposium, 2018. |
28 | SYEDA R Z, SAVELYEV T G, BEURDEN M C, et al. Sparse MIMO array for improved 3D mm-wave imaging radar[C]//Proc. of the 17th European Radar Conference, 2021: 342-345. |
29 |
MA Y , MIAO C , ZHAO Y Y , et al. An MIMO radar system based on the sparse-array and its frequency migration calibration method[J]. Sensors, 2019, 19 (16): 3580.
doi: 10.3390/s19163580 |
30 | YANG F W , XU F , FIORANELLI F , et al. Practical investigation of a MIMO radar system capabilities for small drones detection[J]. IET Radar, Sonar & Navigation, 2021, 15 (7): 760- 774. |
31 |
SUN S Q , BAJWA W U , PETROPULU A P . MIMO-MC radar: a MIMO radar approach based on matrix completion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2015, 51 (3): 1839- 1852.
doi: 10.1109/TAES.2015.140452 |
32 | 宋虎, 蒋迺倜, 刘溶, 等. 基于稀疏采样阵列优化的APG-MUSIC算法[J]. 电子与信息学报, 2018, 40 (6): 1390- 1396. |
SONG H , JIANG N T , LIU L , et al. APG-MUSIC algorithm based on sparse sampling array optimization[J]. Journal of Electronics & Information Technology, 2018, 40 (6): 1390- 1396. | |
33 |
LIU S H , MAO Z H , ZHANG Y M D , et al. Rank minimization-based toeplitz reconstruction for DOA estimation using coprime array[J]. IEEE Communications Letters, 2021, 25 (7): 2265- 2269.
doi: 10.1109/LCOMM.2021.3075227 |
34 |
孙兵, 阮怀林, 吴晨曦, 等. 幅度相位误差条件下的互质阵列DOA估计方法[J]. 系统工程与电子技术, 2021, 43 (12): 3488- 3494.
doi: 10.12305/j.issn.1001-506X.2021.12.09 |
SUN B , RUAN H L , WU C X , et al. DOA estimation method for coprime array under gain and phase error[J]. Systems Engineering and Electronics, 2021, 43 (12): 3488- 3494.
doi: 10.12305/j.issn.1001-506X.2021.12.09 |
|
35 |
CAI J F , CANDES E J , SHEN Z W . A singular value thres-holding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20 (4): 1956- 1982.
doi: 10.1137/080738970 |
36 | TOH K C , YUN S . An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6 (3): 615- 640. |
37 | BOYD S , PARIKH N , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 122. |
38 |
ROCKAFELLAR R T . Augmented lagrange multiplier functions and duality in nonconvex programming[J]. SIAM Journal on Control, 1974, 12 (2): 268- 285.
doi: 10.1137/0312021 |
39 |
GU S H , XIE Q , MENG D Y , et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121 (2): 183- 208.
doi: 10.1007/s11263-016-0930-5 |
40 |
HU Y , ZHANG D B , YE J P , et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 35 (9): 2117- 2130.
doi: 10.1109/TPAMI.2012.271 |
41 |
XU H Y , ZHANG Y K , BA B , et al. Two-dimensional direction-of-arrival fast estimation of multiple signals with matrix completion theory in coprime planar array[J]. Sensors, 2018, 18 (6): 1741.
doi: 10.3390/s18061741 |
42 | LI M X, HU W, DI J Y, et al. An APG-MUSIC algorithm based-on optimized sampling array[C]//Proc. of the MATEC Web of Conferences, 2018. |
43 | DING J R , WANG Z Y , MA W D , et al. TDM-MIMO automotive radar point-cloud detection based on the 2-D hybrid sparse antenna array[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5112215. |
44 | SUN S Q, PETROPULU A P. A sparse linear array approach in automotive radars using matrix completion[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 8614-8618. |
45 | CHEN Y X, CHI Y J. Spectral compressed sensing via structured matrix completion[C]//Proc. of the 30th International Conference on Machine Learning, 2013: 414-422. |
46 |
CHEN J L , ZHANG T X , LI J Q , et al. Joint sensor failure detection and corrupted covariance matrix recovery in bistatic MIMO radar with impaired arrays[J]. IEEE Sensors Journal, 2019, 19 (14): 5834- 5842.
doi: 10.1109/JSEN.2019.2906375 |
47 |
JIANG H M , CHEN J , DONG G M , et al. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 52-53, 338- 359.
doi: 10.1016/j.ymssp.2014.07.019 |
[1] | 曹若石, 赵永波, 邱雨铖. 基于改进SP算法的多目标DOA估计方法[J]. 系统工程与电子技术, 2024, 46(7): 2294-2300. |
[2] | 吴敏, 黎子皓, 郝程鹏, 胡桥. 基于压缩感知的低复杂度超分辨角度估计方法[J]. 系统工程与电子技术, 2024, 46(6): 1831-1837. |
[3] | 张芸萌, 董玫, 陈伯孝. 稀疏阵列的鲁棒矩阵填充DOA估计算法[J]. 系统工程与电子技术, 2024, 46(5): 1477-1483. |
[4] | 胡毅立, 赵永波, 陈胜, 张梅, 牛奔. 圆柱极化敏感阵列降维插值角度估计方法[J]. 系统工程与电子技术, 2023, 45(9): 2659-2666. |
[5] | 孙志国, 王杰, 孙溶辰, 白永珍, 李齐衡. 基于噪声圆形特性的宽带相干信号DOA估计方法[J]. 系统工程与电子技术, 2023, 45(9): 2667-2672. |
[6] | 黄倩兰, 蔡飞, 范红旗, 肖怀铁. 密集假信号存在下单脉冲雷达未分辨目标DOA估计[J]. 系统工程与电子技术, 2023, 45(9): 2727-2734. |
[7] | 王宁, 贺鹏超, 卢景月, 刘曦. 基于DOA估计的前视多通道SAR成像方法[J]. 系统工程与电子技术, 2023, 45(8): 2471-2478. |
[8] | 任明健, 胡国平, 周豪, 游致远, 张凌培. 基于耦合张量分解的稀疏阵列二维DOA估计算法[J]. 系统工程与电子技术, 2023, 45(4): 958-964. |
[9] | 王宁, 吕晓德, 李苗苗. 低信噪比下非冗余阵列的无网格DOA估计[J]. 系统工程与电子技术, 2023, 45(2): 352-359. |
[10] | 刘甲磊, 马佳智, 施龙飞. 虚拟波束四阶累积量DOA估计方法[J]. 系统工程与电子技术, 2022, 44(7): 2134-2142. |
[11] | 曲志昱, 孙萌, 戴幻尧. 基于共形阵的角度和极化信息联合估计算法[J]. 系统工程与电子技术, 2022, 44(6): 1798-1804. |
[12] | 韦娟, 严世安, 宁方立. 基于互质阵虚拟阵列空间平滑的相干信号DOA估计方法[J]. 系统工程与电子技术, 2022, 44(4): 1069-1077. |
[13] | 范保华, 左乐, 唐勇, 胡泽华. 基于最大期望算法的多时变信号DOA估计方法[J]. 系统工程与电子技术, 2022, 44(2): 420-426. |
[14] | 陈涛, 史林, 申梦雨. 基于M-FIPM的无网格DOA估计算法[J]. 系统工程与电子技术, 2022, 44(2): 427-433. |
[15] | 张俊, 张新禹, 姜卫东, 刘永祥, 黎湘. 基于广义近似消息传递的快速DOA估计方法[J]. 系统工程与电子技术, 2022, 44(10): 2995-3002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||