1 |
FAKIH A H, SHASHIDHAR S M, KARANDIKAR R G. Comparative analysis of different DOA estimation techniques[C]//Proc. of the International Conference on Smart City and Emerging Technology, 2018.
|
2 |
HU B, LI X J, CHONG P H J. Denoised modified incoherent signal subspace method for DOA of coherent signals[C]//Proc. of the IEEE Asia-Pacific Conference on Antennas and Propagation, 2018: 539-540.
|
3 |
BAI J, SHEN X H, WANG H Y, et al. Improved toeplitz algorithms to coherent sources DOA estimation[C]//Proc. of the International Conference on Measuring Technology and Mechatronics Automation, 2010: 442-445.
|
4 |
LIU J Y , LU Y L , ZHANG Y M , et al. DOA estimation with enhanced DOFs by exploiting cyclostationarity[J]. IEEE Trans.on Signal Processing, 2017, 65 (6): 1486- 1496.
doi: 10.1109/TSP.2016.2645542
|
5 |
VAIDYANATHAN P P , PAL P . Sparse sensing with co-prime samplers and arrays[J]. IEEE Trans.on Signal Processing, 2011, 59 (2): 573- 586.
doi: 10.1109/TSP.2010.2089682
|
6 |
LI J F, SHEN M W, JIANG D F. Fast direction of arrival estimation using a sensor-saving coprime array with enlarged inter-element spacing[C]//Proc. of the IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, 2018: 179-183.
|
7 |
LI J F, WANG F, JIANG D F. Direction of arrival estimation using sum co-array of coprime arrays[C]//Proc. of the International Applied Computational Electromagnetics Society Sympo-sium, 2017.
|
8 |
RAJAMAKI R , KOIVUNEN V . Sparse symmetric linear arrays with low redundancy and a contiguous sum co-array[J]. IEEE Trans.on Signal Processing, 2021, 69 (7): 1697- 1712.
|
9 |
JIANG G J , MAO X P , LIU Y T . Underdetermined DOA estimation via covariance matrix completion for nested sparse circular array in nonuniform noise[J]. IEEE Signal Processing Letters, 2020, 27 (2): 1824- 1828.
|
10 |
ZHAN C H, HU G P, ZHANG Z X, et al. DOA estimation for nested array from reusing redundant virtual array elements viewpoint[C]//Proc. of the IEEE 8th International Conference on Information, Communication and Networks, 2020: 79-84.
|
11 |
SUN B, WU C X, RUAN H L, et al. Direction-of-arrival estimation for coprime array via covariance matrix reconstruction[C]//Proc. of the IEEE 3rd International Conference on Electronics Technology, 2020: 634-638.
|
12 |
LI J F, SHEN M W, JIANG D F. Fast direction of arrival estimation using a sensor-saving coprime array with enlarged inter-element spacing[C]//Proc. of the IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, 2018: 179-183.
|
13 |
SHAN T J , WAX W , KAILATH T . On spatial smoothing for estimation of coherent signals[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (4): 806- 811.
doi: 10.1109/TASSP.1985.1164649
|
14 |
TAN J, NIE Z P, PENG S. Quadratic forward and backward spatial smoothing polarization smoothing music algorithm for low angle estimation[C]//Proc. of the IEEE Radar Conference, 2019.
|
15 |
WILLIAMS R T , PRASAD S , MAHALANABIS A K , et al. An improved spatial smoothing technique for bearing estimation in a multipath environment[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1988, 36 (4): 425- 432.
doi: 10.1109/29.1546
|
16 |
ZHAGYPAR R, ZHAGYPAROVA K, AKHTAR M T. Exploiting the rules of the TF-MUSIC and spatial smoothing to enhance the DOA estimation for coherent and non-stationary sources[C]//Proc. of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2020: 236-241.
|
17 |
HAN F M , ZHANG X D . An ESPRIT-like algorithm for coherent DOA estimation[J]. IEEE Antennas and Wireless Propa-gation Letters, 2005, 4 (5): 443- 446.
|
18 |
LI J , STOICA P , LIU Z S . Comparative study of IQML and MODE direction-of-arrival estimation[J]. IEEE Trans.on Signal Processing, 1988, 46 (1): 149- 160.
|
19 |
STOICA P , SHARMAN K C . Maximum likelihood methods for direction-of-arrivalestimation[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1990, 38 (7): 1132- 1143.
doi: 10.1109/29.57542
|
20 |
STOICA P, NEHORAI A. Mode, maximum likelihood and Cramer-Rao bound: conditional and unconditional results[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1990: 2715-2718.
|
21 |
OTTERSTEN B, VIBERG M. Analysis of subspace fitting based methods for sensor array processing[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1989: 2807-2810.
|
22 |
OTTERSTEN B, WAHLBERGB, VIBERG M, et al. Stochastic maximum likelihood estimation in sensor arrays by weighted subspace fitting[C]//Proc. of the 23rd Asilomar Conference on Signals, Systems and Computers, 1989: 599-603.
|
23 |
VIBERG M , OTTERSTEN B , KAILATH T . Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans.on Signal Processing, 1991, 39 (11): 2436- 2449.
doi: 10.1109/78.97999
|
24 |
STOICA P , NEHORAI A . Performance study of conditional and unconditional direction-of-arrivalestimation[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1990, 38 (10): 1783- 1795.
doi: 10.1109/29.60109
|
25 |
HUANG CJ , DAI C W , TSAI T Y , et al. A closed-form phase-comparison ML DOA estimator for automotive radar with one single snapshot[J]. IEICE Electronics Express, 2013, 10 (7): 20130086.
doi: 10.1587/elex.10.20130086
|
26 |
WANG Y M, LIU S, JIN M. Localization of coherent signals based on toeplitz matrix reconstruction in spatially colored nosie[C]//Proc. of the IEEE 2nd International Conference on Electronic Information and Communication Technology, 2019: 160-163.
|
27 |
ZHANG W , HAN Y , QIAO X . Multiple-toeplitz matrices reconstruction algorithm for DOA estimation of coherent signals[J]. IEEE Access, 2019, 7, 49504- 49512.
doi: 10.1109/ACCESS.2019.2909783
|
28 |
唐晓杰, 赵迪, 何明浩, 等. 一种基于前后向Toeplitz矩阵重构的相干信号DOA估计算法[J]. 中国电子科学研究院学报, 2019, 14 (8): 823- 829.
doi: 10.3969/j.issn.1673-5692.2019.08.008
|
|
TANG X J , ZHAO D , HE M H , et al. DOA Estimation of coherent signals based on forward and backward Toeplitz matrix reconstruction[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14 (8): 823- 829.
doi: 10.3969/j.issn.1673-5692.2019.08.008
|
29 |
PENG J Q, ZHENG G M, ZHU Q Y. A novel weighted spatial smoothing DOA estimation algorithm for coherent signals[C]// Proc. of the IEEE 3rd International Conference on Electronic Information Communication Technology, 2020: 504-508.
|
30 |
占成宏, 胡国平, 周豪, 等. 基于虚拟阵元内插的互质阵列目标DOD和DOA联合估计算法[J]. 系统工程与电子技术, 2020, 42 (7): 1455- 1463.
|
|
ZHAN C H , HU G P , ZHOU H , et al. Joint DOD and DOA estimation virtual array algorithm for coprime arrays based on element interpolation[J]. Systems Engineering and Electronics, 2020, 42 (7): 1455- 1463.
|
31 |
徐阳, 易建新, 程丰, 等. 基于互质阵列的外辐射源雷达低仰角估计[J]. 雷达科学与技术, 2020, 18 (5): 501- 508.
doi: 10.3969/j.issn.1672-2337.2020.05.007
|
|
XV Y , YI J X , CHENG F , et al. Research on low-elevation estimation based on coprime array in passive radar[J]. Radar Science and Technology, 2020, 18 (5): 501- 508.
doi: 10.3969/j.issn.1672-2337.2020.05.007
|
32 |
FAN X, ZHOU C W, GU Y J, et al. Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]//Proc. of the IEEE 85th Vehicular Technology Confe-rence, 2017.
|
33 |
ZHOU C W, SHI Z G, GU Y J, et al. Coarrayinterpolation-based coprime arrraydoa estimation via convariance matrix reconstruction[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2018: 3479-3483.
|
34 |
LI Y X, CHI Y J. Compressive parameter estimation with multiple measurement vectors via structured low-rank covariance estimation[C]//Proc. of the IEEE Workshop on Statistical Signal Processing, 2014: 384-387.
|
35 |
LIU Z M , HUANG Z T , ZHOU Y Y . Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors[J]. IEEE Trans.on Wireless Communications, 2013, 12 (8): 1- 12.
doi: 10.1109/TWC.2013.071113.121305
|
36 |
LIU C L , VAIDYANATHAN P P . Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22 (9): 1438- 1442.
doi: 10.1109/LSP.2015.2409153
|