| 1 | 闫锋刚, 沈毅, 刘帅, 等.  高效超分辨波达方向估计算法综述[J]. 系统工程与电子技术, 2015, 37 (7): 1465- 1475. | 
																													
																						|  | YAN F G ,  SHEN Y ,  LIU S , et al.  Overview of efficient algorithms for super resolution DOA estimates[J]. Systems Engineering and Electronics, 2015, 37 (7): 1465- 1475. | 
																													
																						| 2 | 田航.  MUSIC算法性能研究综述[J]. 科技资讯, 2019, 17 (27): 5- 6. | 
																													
																						|  | TIAN H .  Overview of MUSIC algorithm performance[J]. Science & Technology Information, 2019, 17 (27): 5- 6. | 
																													
																						| 3 | 吴晓欢. 基于稀疏表示的波达方向估计理论与方法研究[D]. 南京: 南京邮电大学, 2017. | 
																													
																						|  | WU X H. Sparse representation based theory and methods for direction-of-arrival estimation[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017. | 
																													
																						| 4 | 刁弘扬, 胡洲勇, 禹永植.  一种改进广义正交匹配追踪的DOA估计方法[J]. 应用科技, 2020, 47 (4): 54- 58. | 
																													
																						|  | DIAO H Y ,  HU Z Y ,  YU Y Z .  An improved generalized orthogonal matching pursuit method used in the direction of arrival estimation[J]. Applied Science and Technology, 2020, 47 (4): 54- 58. | 
																													
																						| 5 | TIBSHIRANI R .  Regression shrinkage and selection via the Lasso: a retrospective[J]. Journal of the Royal Statistical Society Series B—Statistical Methodology, 2011, 73 (2): 267- 288. | 
																													
																						| 6 | LING Y ,  GAO H T ,  ZHOU S , et al.  Robust sparse Bayesian learning-based off-grid DOA estimation method for vehicle localization[J]. Sensors, 2020, 20 (1): 302. doi: 10.3390/s20010302
 | 
																													
																						| 7 | ZHANG X Y, HUO K, LIU Y, et al. Direction of arrival estimation via joint sparse Bayesian learning for bi-static passive radar[C]//Proc. of the IEEE International Conference on Signal, Information and Data Proccessing, 2019. | 
																													
																						| 8 | LUO M, GUO Q H, HUANG D F, et al. Sparse Bayesian learning based on approximate message passing with unitary transformation[C]//Proc. of the IEEE VTS Asia Pacific Wireless Communications Symposium, 2019. | 
																													
																						| 9 | MAO Y W ,  LUO M ,  GAO D W , et al.  Low complexity DOA estimation using AMP with unitary transformation and iterative refinement[J]. Digital Signal Processing, 2020, 106, 102800. doi: 10.1016/j.dsp.2020.102800
 | 
																													
																						| 10 | DAI J S ,  BAO X ,  XU W C , et al.  Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24 (1): 46- 50. doi: 10.1109/LSP.2016.2636319
 | 
																													
																						| 11 | HURI N, FEDER M. Selecting the LASSO regularization parameter via Bayesian principles[C]//Proc. of the IEEE International Conference on the Science of Electrical Engineering, 2016. | 
																													
																						| 12 | RANGAN S. Generalized approximate message passing for estimation with random linear mixing[EB/OL]. [2021-03-29]. http://arXiv.org/abs/1010.5141. | 
																													
																						| 13 | RANGAN S, SCHNITER P, FLETCHER A. On the convergence of approximate message passing with arbitrary matrices[C]//Proc. of the IEEE International Symposium on Information Theory, 2014. | 
																													
																						| 14 | DAI J ,  SO H C .  Sparse Bayesian learning approach for outlier resistant direction of arrival estimation[J]. IEEE Trans.on Signal Processing, 2018, 66 (3): 744- 756. doi: 10.1109/TSP.2017.2773420
 | 
																													
																						| 15 | LIU Z M ,  HUANG Z T ,  ZHOU Y Y .  An efficient maximum likelihood method for direction-of-arrival estimation via sparse bayesian learning[J]. IEEE Trans.on Wireless Communications, 2012, 11 (10): 1- 11. doi: 10.1109/TWC.2012.090312.111912
 | 
																													
																						| 16 | WIPF D P ,  RAO B D .  An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Trans.on Signal Processing, 2007, 55 (7): 3704- 3716. doi: 10.1109/TSP.2007.894265
 | 
																													
																						| 17 | GERSTOFT P ,  MECKLENBRAUKER C F ,  XENAKI A , et al.  Multisnapshot sparse Bayesian learning for DOA[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1469- 1473. doi: 10.1109/LSP.2016.2598550
 | 
																													
																						| 18 | VILA J P ,  SCHNITER P .  Expectation maximization Gaussian mixture approximate message passing[J]. IEEE Trans.on Signal Processing, 2013, 61 (19): 4658- 4672. doi: 10.1109/TSP.2013.2272287
 | 
																													
																						| 19 | MALIOUTOV D ,  CETIN M ,  WILLSKY A S .  A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans.on Signal Processing, 2005, 53 (8): 3010- 3012. doi: 10.1109/TSP.2005.850882
 |