1 |
张圣林, 林潇霏, 孙永谦, 等. 基于深度学习的无监督KPI异常检测[J]. 数据与计算发展前沿, 2020, 2 (3): 87- 100.
|
|
ZHANG S L , LIN X F , SUN Y Q , et al. Research on unsupervised KPI anomaly detection based on deep learning[J]. Frontiers of Data and Computing, 2020, 2 (3): 87- 100.
|
2 |
YE Q L , YANG J , YIN T M , et al. Can the virtual labels obtained by traditional LP approaches be well encoded in WLR?[J]. IEEE Trans.on Neural Networks and Learning Systems, 2015, 27 (7): 1591- 1598.
|
3 |
CHANDOLA V , BANERJEE A , KUMAR V . Anomaly detection: a survey[J]. ACM Computing Surveys (CSUR), 2009, 41 (3): 1- 58.
|
4 |
RINGBERG H, SOULE A, REXFORD J, et al. Sensitivity of PCA for traffic anomaly detection[C]//Proc. of the Measurement and Modeling of Computer Systems, 2007.
|
5 |
PENA E H M, ASSIS M V O, PROENCA M L. Anomaly detection using forecasting methods ARIMA and HWDS[C]//Proc. of the 32nd International Conference of the Chilean Computer Science Society, 2013: 63-66.
|
6 |
NADAI M D, SOMEREN M V. Short-term anomaly detection in gas consumption through ARIMA and artificial neural network forecast[C]//Proc. of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, 2015: 250-255.
|
7 |
CHEN Y, MAHAJAN R, SRIDHARAN B, et al. A provider-side view of web search response time[C]//Proc. of the ACM Special Interest Group on Data Communication, 2013.
|
8 |
LAPTEV N, AMIZADEH S, FLINT I. Generic and scalable framework for automated time-series anomaly detection[C]//Proc. of the Knowledge Discovery and Data Mining, 2015.
|
9 |
LIU D P, ZHAO Y J, XU H W, et al. Opprentice: towards practical and automatic anomaly detection through machine learning[C]//Proc. of the Internet Measurement Conference, 2015: 211-224.
|
10 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proc. of the ACM SIGMOD International Conference on Management of Data, 2000: 93-104.
|
11 |
AMER M, GOLDSTEIN M, ABDENNADHER S. Enhancing one-class support vector machines for unsupervised anomaly detection[C]//Proc. of the ACM SIGKDD Workshop on Outlier Detection and Description, 2013: 8-15.
|
12 |
ERFANI S M , RAJASEGARAR S , KARUNASEKERA S , et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58, 121- 134.
|
13 |
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proc. of the 8th IEEE International Conference on Data Mining, 2008: 413-422.
|
14 |
MUNZ G, LI S, CARLE G. Traffic anomaly detection using k-means clustering[C]//Proc. of the GI/ITG Workshop MMBnet, 2007.
|
15 |
MALHOTRA P, VIG L, SHROFF G, et al. Long short term memory networks for anomaly detection in time series[C]//Proc. of the European Symposium on Artificial Neural Networks, 2015: 89-94.
|
16 |
AN J W , CHO S Z . Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2 (1): 1- 18.
|
17 |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]// Proc. of the International Conference on Learning Representations, 2018.
|
18 |
XU H W, CHEN W X, ZHAO N W, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPI in web applications[C]//Proc. of the World Wide Web Conference, 2018: 187-196.
|
19 |
LI Z Y, CHEN W X, PEI D. Robust and unsupervised KPI anomaly detection based on conditional variational autoencoder[C]// Proc. of the IEEE 37th International Performance Computing and Communications Conference, 2018.
|
20 |
SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|
21 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015: 448-456.
|
22 |
LIN S, CLARK R, BIRKE R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]//Proc. of the ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4322-4326.
|
23 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-04-11]. https://arXiv.org/abs/1312.6114.
|
24 |
SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[C]//Proc. of the Advances in Neural Information Processing Systems, 2015.
|
25 |
HOCHREITER S , SCHMIDHUBER J . Long-shortterm memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
|
26 |
LI Z Y, ZHAO N W, ZHANG S L, et al. Constructing large-scale real-world Benchmark datasets for AIOps[EB/OL]. [2023-04-11]. https://arXiv.org/abs/2208.03938.
|
27 |
ZHANG S L, ZHAO C Y, SUI Y C, et al. Robust KPI anomaly detection for large-scale software services with partial labels[C]// Proc. of the IEEE 32nd International Symposium on Software Reliability Engineering, 2021: 103-114.
|