系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1335-1345.doi: 10.12305/j.issn.1001-506X.2025.04.30

• 通信与网络 • 上一篇    下一篇

相关噪声下基于深度学习的LDPC码码率半盲识别算法

袁磊1,*, 杨艳娟1, 郭毅2, 戴鹏1   

  1. 1. 兰州大学信息科学与工程学院, 甘肃 兰州 730000
    2. 中国科学院西安光学精密机械研究所, 陕西 西安 710119
  • 收稿日期:2024-04-18 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 袁磊
  • 作者简介:袁磊 (1981—), 男, 副教授, 博士, 主要研究方向为智能通信、新一代移动通信
    杨艳娟 (1999—), 女, 硕士研究生, 主要研究方向为信道编译码、智能通信
    郭毅 (1986—), 男, 工程师, 博士研究生, 主要研究方向为强化学习
    戴鹏 (2000—), 男, 硕士研究生, 主要研究方向为信道编译码、智能通信
  • 基金资助:
    甘肃省科技计划(22JR5RA490)

Deep learning-based semi-blind identification algorithm for code rates of LDPC codes with correlated noise

Lei YUAN1,*, Yanjuan YANG1, Yi GUO2, Peng DAI1   

  1. 1. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
    2. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • Received:2024-04-18 Online:2025-04-25 Published:2025-05-28
  • Contact: Lei YUAN

摘要:

为了正确识别相关噪声下采用低密度奇偶校验码和高阶调制的无线通信系统的信道编码参数, 在已知候选码率集合和相应奇偶校验矩阵的假定下, 提出两种基于深度学习的码率半盲识别算法。所提神经网络由降噪子网络和码率识别子网络构成, 降噪子网络设计实数降噪子网络和复数降噪子网络。相比于实数降噪子网络, 复数降噪子网络以高复杂度为代价,获得更好的处理复信号的能力。进一步, 为了降低复数降噪子网络的复杂度, 提出一种基于网络剪枝技术的网络压缩算法。仿真实验结果表明, 通过使用联合优化降噪损失函数和码率识别损失函数的多任务学习策略: 一方面, 在相关噪声下提出的神经网络比传统算法具有更好的识别性能;另一方面, 当利用网络压缩算法将基于复数降噪子网络识别算法的复杂度降低到与基于实数降噪的子网络识别算法的复杂度相近时, 其性能仍优于基于实数降噪子网络的识别算法。

关键词: 相关噪声, 信道编码盲识别, 低密度奇偶校验码, 深度学习, 复数网络

Abstract:

In order to correctly identify the channel coding parameters of low-density parity-check coded wireless communication systems with high-order modulation over correlated noise, two novel deep learning-based semi-blind identification algorithms for code rates are proposed under the assumption that the candidate set of code rates and the corresponding parity check matrices are known. The proposed neural networks consist of the denoising subnetwork and the code-rate identification subnetwork. Moreover, the denoising subnetwork designs the real-valued denoising subnetwork and the complex-valued denoising subnetwork. Compared to the real-valued denoising subnetwork, the complex-valued denoising subnetwork has a better ability to process complex-valued signals with the cost of high complexity. Furthermore, in order to reduce the complexity of the complex-valued denoising subnetwork, a novel network compression algorithm based on network pruning technology is proposed. Simulation results show that, by using the novel multi-task learning strategy which jointly optimizes the denoising loss function and the loss function corresponding to code-rate identification, on one hand, the proposed neural networks have better identification performance comparing with the traditional algorithms with correlated noise, on the other hand, the identification algorithm based on complex-valued denoising subnetwork still outperforms the identification algorithm based on real-valued denoising subnetwork when its complexity approaches to that of the identification algorithm based on real-valued denoising subnetwork by using the network compression algorithm.

Key words: correlated noise, blind identification of channel coding, low-density parity-check (LDPC) code, deep learning, complex-valued network

中图分类号: