系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1067-1073.doi: 10.12305/j.issn.1001-506X.2025.04.05

• 电子技术 • 上一篇    下一篇

基于注意力图剪枝的辐射源信号识别方法

王慧赋1,2, 潘海波1, 罗佳2,3, 陶诗飞1,3,*   

  1. 1. 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
    2. 中国电子科技集团公司 第二十九研究所, 四川 成都 610036
    3. 电磁空间安全全国重点实验室, 四川 成都 610036
  • 收稿日期:2024-04-29 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 陶诗飞
  • 作者简介:王慧赋 (1998—), 男, 工程师, 硕士, 主要研究方向为辐射源信号识别、深度学习
    潘海波 (2000—), 男, 硕士研究生, 主要研究方向为电子侦察、辐射源信号处理
    罗佳 (1989—), 男, 高级工程师, 博士, 主要研究方向为电子对抗
    陶诗飞 (1987—), 男, 副教授, 博士, 主要研究方向为电子侦察、目标识别、电磁隐身
  • 基金资助:
    电磁空间安全全国重点实验室开放基金资助课题

Radiation source signal recognition method based on attention map pruning

Huifu WANG1,2, Haibo PAN1, Jia LUO2,3, Shifei TAO1,3,*   

  1. 1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2. The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China
    3. National Key Laboratory of Electromagnetic Space Security, Chengdu 610036, China
  • Received:2024-04-29 Online:2025-04-25 Published:2025-05-28
  • Contact: Shifei TAO

摘要:

针对用于辐射源信号识别的神经网络存在参数冗余、运算量庞大的问题, 提出一种基于注意力图剪枝的辐射源信号识别方法。所提方法利用一阶梯度与特征激活值的乘积来衡量基准网络卷积核的效用值, 并将效用值低的卷积核去除。为避免剪枝后子网络的信号识别性能下降, 所提方法在微调训练阶段引入注意力图知识损失, 并构建联合损失函数, 将基准网络的特征提取能力迁移至子网络。实验结果表明, 对基准网络进行剪枝后, 子网络的信号识别准确率仅下降0.07%, 网络参数量下降48.7%, 运算量下降80.1%,验证了所提方法在保证信号识别准确率的前提下有效地实现了网络轻量化。

关键词: 辐射源信号识别, 模型剪枝, 注意力图, 网络复杂度

Abstract:

In order to solve the problems of redundant parameters and large amount of computation in the neural network used for radiation source signal recognition, a method of radiation source signal recognition based on attention map pruning is proposed. The proposed method uses the product of the first-order gradient and feature activation values to measure the effectiveness values of the benchmark network convolution kernels, and removes the convolution kernels with low effectiveness values. In order to avoid the serious degradation of signal recognition performance of subnetworks after pruning, the proposed method introduces attention map knowledge loss in the fine-tuning training stage and constructs a joint loss function to transfer the feature extraction capability of the benchmark network to the subnetwork. The experimental results show that after pruning the benchmark network, the signal recognition accuracy of the subnetwork decreases by only 0.07%, the number of network parameters decreases by 48.7%, and the amount of computation decreases by 80.1%. These outcomes validate that the approach presented in this paper effectively accomplishes network lightweighting while maintaining the accuracy of signal recognition.

Key words: radiation source signal recognition, model pruning, attention map, network complexity

中图分类号: