1 |
WANG C, WANG J, ZHANG X D. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 2437-2441.
|
2 |
ZHANG M , DIAO M , GAO L P , et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9 (5): 75.
doi: 10.3390/sym9050075
|
3 |
CHEN T , LIU L Z . LPI radar waveform recognition based on multi-branch MWC compressed sampling receiver[J]. IEEE Access, 2018, 6, 30342- 30354.
doi: 10.1109/ACCESS.2018.2845102
|
4 |
ZHOU Z W , HUANG G M , CHEN H Y , et al. Automatic radar waveform recognition based on deep convolutional denoising autoencoders[J]. Circuits, Systems, and Signal Processing, 2018, 37 (9): 4034- 4048.
doi: 10.1007/s00034-018-0757-0
|
5 |
KONG S H , KIM M , HOANG L M , et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
6 |
黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40 (11): 33- 38.
|
|
HUANG Y K , JIN W D , YU Z B , et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40 (11): 33- 38.
|
7 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
8 |
郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40 (4): 875- 881.
|
|
GUO L M , KOU Y H , CHEN T , et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40 (4): 875- 881.
|
9 |
QU Z Y , MAO X J , DENG Z A . Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6, 43874- 43884.
doi: 10.1109/ACCESS.2018.2864347
|
10 |
叶文强, 俞志富, 张奎. 基于DAE+CNN辐射源信号识别算法[J]. 计算机应用研究, 2019, 36 (12): 3815- 3818.
|
|
YE W Q , YU Z F , ZHANG K . Recognition algorithm of emitter signal based on DAE+CNN[J]. Application Research of Computers, 2019, 36 (12): 3815- 3818.
|
11 |
QU Z , HOU C F , HOU C B , et al. Radar signal intra-pulse modulation recognition based on convolutional neural network and deep Q-learning network[J]. IEEE Access, 2020, 8, 49125- 49136.
doi: 10.1109/ACCESS.2020.2980363
|
12 |
RICHARD G , WILEY E . The interception and analysis of radar signals[M]. Boston: Artech House, 2006.
|
13 |
XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|
14 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2021-09-01]. https://arxiv.org/abs/1511.07122.
|
15 |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE conference on computer vision and pattern recognition, 2018: 7132-7141.
|
16 |
万磊, 佟鑫, 盛明伟, 等. Softmax分类器深度学习图像分类方法应用综述[J]. 导航与控制, 2019, 18 (6): 1- 9.
doi: 10.3969/j.issn.1674-5558.2019.06.001
|
|
WAN L , TONG X , SHENG M W , et al. Review of image classification based on softmax classifier in deep learning[J]. Navigation and Control, 2019, 18 (6): 1- 9.
doi: 10.3969/j.issn.1674-5558.2019.06.001
|
17 |
FENG Z P , LIANG M , CHU F L . Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38 (1): 165- 205.
doi: 10.1016/j.ymssp.2013.01.017
|
18 |
WANG C, WANG J, ZHANG X D. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]//Proc. of the IEEE international Conference on Acoustics, Speech and Signal Processing, 2017: 2437-2441.
|
19 |
胡丹. 低截获概率雷达辐射源信号降噪与检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
HU D. Research on denoise and detection technology of low probability radar radiation source signal[D]. Harbin: Harbin Institute of Technology, 2017.
|
20 |
王旭东, 刘渝. 多通道自相关信号检测算法及其FPGA实现[J]. 仪器仪表学报, 2007, 28 (5): 875- 881.
doi: 10.3321/j.issn:0254-3087.2007.05.021
|
|
WANG X D , LIU Y . Multi-channel self-correlation signal detection algorithm and its FPGA implementation[J]. Chinese Journal of Scientific Instrument, 2007, 28 (5): 875- 881.
doi: 10.3321/j.issn:0254-3087.2007.05.021
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
22 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE conference on computer vision and pattern recognition, 2015.
|
23 |
ABIEN F A. Deep learning using rectified linear units (relu)[EB/OL]. [2021-09-01]. https//arxiv.org/abs/1803.08375.
|
24 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proc. of the 14th International Conference on Artificial Intelligence and Statistics, 2011: 315-323.
|
25 |
LOFFE S, SZEGEDY C. Batch normalization: accelerating deep network trainingby reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015: 448-456.
|
26 |
PASZKE A , GROSS S , MASSA F , et al. Pytorch: an imperative style, high performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32, 8026- 8037.
|
27 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-09-01]. https://arxiv.org/abs/1412.6980.
|
28 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electionica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
29 |
QIN X, ZHA X, HUANG J, et al. Radar waveform recognition based on deep residual network[C]//Proc. of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 892-896.
|
30 |
LAUREN V D M , HINTON G . Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9, 2579- 2605.
|