1 |
李昆, 朱卫纲. 基于机器学习的雷达辐射源识别综述[J]. 电子测量技术, 2019, 42 (18): 69- 75.
|
|
LI K , ZHU W G . A review of radar radiation source recognition based on machine learning[J]. Electronic Measurement Technology, 2019, 42 (18): 69- 75.
|
2 |
张政超, 李应升, 王磊, 等. 雷达辐射源信号识别研究综述[J]. 舰船电子工程, 2009, 29 (4): 10- 14.
|
|
ZHANG Z C , LI Y S , WANG L , et al. Research review of radar radiation source signal recognition[J]. Ship Electronic Engineering, 2009, 29 (4): 10- 14.
|
3 |
WANG S Q , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
|
4 |
韩立辉, 黄高明, 王鹏. 基于瞬时自相关算法的线性调频雷达信号脉内分析研究[J]. 舰船电子对抗, 2011, 34 (3): 1- 4, 12.
|
|
HAN L H , HUANG G M , WANG P . Intra-pulse analysis of linear FM radar based on instantaneous autocorrelation algorithm[J]. Shipboard Electronic Countermeasure, 2011, 34 (3): 1- 4, 12.
|
5 |
吕博群, 沈永健, 周云生. 基于矩特征的雷达信号脉内调制样式识别方法研究[J]. 遥测遥控, 2017, 38 (4): 32- 37.
|
|
LYU B Q , SHEN Y J , ZHOU Y S . Research on the recognition method of pulse modulation in radar signal based on moment characteristics[J]. Telemetry and Remote Control, 2017, 38 (4): 32- 37.
|
6 |
郭立民, 陈鑫, 陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49 (3): 1000- 1008.
|
|
GUO L M , CHEN X , CHEN T . Radar signal modulation type recognition based on AlexNet model[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (3): 1000- 1008.
|
7 |
ZHANG M , LIU L T , DIAO M . LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16, 1682.
|
8 |
LI Y J , XIAO P , WU H C , et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
|
9 |
刘括然. 基于LSTM的雷达辐射源识别技术[J]. 舰船电子工程, 2019, 39 (12): 92- 95.
|
|
LIU K R . Radar radiation source identification based on LSTM[J]. Ship Electronic Engineering, 2019, 39 (12): 92- 95.
|
10 |
陈森森.基于RNN的雷达辐射源分类识别算法研究[D].西安:西安电子科技大学, 2019.
|
|
CHEN S S. Research on radar source classification and recognition algorithm based on RNN[D]. Xi'an: Xidian University, 2019.
|
11 |
SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal, 2015.
|
12 |
DINKEL H, CHEN N, QIAN Y, et al. End-to-end spoofing detection with raw waveform CLDNNS[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal, 2017: 4860-4864.
|
13 |
ZAZO R, SAINATH T N, SIMKO G, et al. Feature learning with raw-waveform cldnns for voice activity detection[C]//Proc.of the Interspeech, 2016: 3668-3672.
|
14 |
SAINATH T N, WEISS R, WILSON K W, et al. Learning the speech front-end with raw waveform CLDNNs[C]//Proc.of the Conference of the International Speech Communication Association, 2015.
|
15 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2020-04-30]. http://arxiv.org/pdf/1412.3555v1.
|
16 |
SUNDERMEYER M, SCHLUTER R, NEY H. LSTM neural networks for language modeling[C]//Proc.of the Interspeech, 2012: 601-608.
|
17 |
IRIE K, TUSKE Z, ALKHOULI T, et al. LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition[C]//Proc.of the Interspeech, 2016.
|
18 |
CHO K, VAN M B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2020-04-30]. http://arxiv.org/abs/1406.1078.
|
19 |
张国豪, 刘波. 采用CNN和Bidirectional GRU的时间序列分类研究[J]. 计算机科学与探索, 2019, 13 (6): 916- 927.
|
|
ZHANG G H , LIU B . Research on time series classification using CNN and Bidirectional GRU[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13 (6): 916- 927.
|
20 |
CHEN J X , JIANG D M , ZHANG Y N , et al. A hierarchical bidirectional GRU model with attention for EEG-Based emotion classification[J]. IEEE Access, 2019, 7, 118530- 118540.
|
21 |
王静.基于双向门控循环单元的评论文本情感分类[D].南京:南京邮电大学, 2018.
|
|
WANG J. Sentiment classification for review texts via bi-directional gated recurrent unit[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.
|