系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2527-2539.doi: 10.12305/j.issn.1001-506X.2025.08.11
• 传感器与信号处理 • 上一篇
倪康1,2(), 贾文杰1(
), 邹旻瑞1(
), 郑志忠1,2,*(
)
收稿日期:
2024-05-10
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
郑志忠
E-mail:tznikang@163.com;Shadow_Armor@163.com;traveler_wood@163.com;zhengzz_js@126.com
作者简介:
倪 康(1990—),男,副教授,博士,主要研究方向为SAR图像目标检测与分类基金资助:
Kang NI1,2(), Wenjie JIA1(
), Minrui ZOU1(
), Zhizhong ZHENG1,2,*(
)
Received:
2024-05-10
Online:
2025-08-25
Published:
2025-09-04
Contact:
Zhizhong ZHENG
E-mail:tznikang@163.com;Shadow_Armor@163.com;traveler_wood@163.com;zhengzz_js@126.com
摘要:
针对合成孔径雷达(synthetic aperture radar,SAR)图像的成像机理导致SAR图像受噪声影响严重且SAR目标类别存在不均衡问题,使得SAR目标特征刻画较困难。针对上述问题,提出一种基于动态聚合网络(dynamic aggregation network,DANet)的SAR目标检测方法。该网络以无锚框全卷积一阶段目标检测(fully convolutional one-stage object detection,FCOS)网络为基础网络框架。DANet在特征金字塔网络中嵌入具有动态坐标注意力的动态聚合模块,以提高噪声影响下SAR目标特征学习能力。为了缓解SAR数据集中不同类别之间数量不平衡的问题,DANet在检测头的回归分支引入类平衡动态交并比(intersection over union,IoU)损失函数,通过动态非单调机制和类平衡因子引导模型参数更新。在MSAR-1.0数据集和SAR-AIRcraft-1.0数据集上的实验结果表明,DANet在上述SAR目标检测数据集上的目标检测准确率分别达到了70.25%和52.36%,相比基准网络FCOS,其平均精度分别提高了2.73%和3.67%。与其他相关算法相比,DANet在SAR图像目标检测精度方面具有明显优势。
中图分类号:
倪康, 贾文杰, 邹旻瑞, 郑志忠. 基于动态聚合网络的SAR目标检测[J]. 系统工程与电子技术, 2025, 47(8): 2527-2539.
Kang NI, Wenjie JIA, Minrui ZOU, Zhizhong ZHENG. SAR object detection based on dynamic aggregation network[J]. Systems Engineering and Electronics, 2025, 47(8): 2527-2539.
表3
MSAR-1.0数据集上不同算法的性能比较"
对比算法 | mAP/% | DR/% | FAR/% | FLOPS(×108) | FPS | 参数量(×106) |
ATSS[ | 68.00 | 71.43 | 35.22 | 12.89 | 180.72 | 32.12 |
Deformable_DETR[ | 65.02 | 73.51 | 43.57 | 14.62 | 107.61 | 40.10 |
Faster R-CNN[ | 55.69 | 57.83 | 47.09 | 26.13 | 138.24 | 41.36 |
FCOS[ | 67.52 | 72.10 | 35.27 | 12.89 | 195.97 | 32.12 |
GFL[ | 67.24 | 70.75 | 37.25 | 13.08 | 178.14 | 32.27 |
PAA[ | 63.37 | 68.73 | 42.10 | 12.89 | 106.52 | 32.12 |
RepPoints[ | 49.25 | 56.05 | 57.21 | 12.12 | 106.99 | 36.82 |
RetinaNet[ | 33.71 | 52.28 | 76.23 | 13.14 | 186.30 | 36.39 |
YOLOF[ | 46.39 | 50.75 | 59.55 | 6.58 | 287.21 | 42.41 |
YOLOv8 | 58.86 | 58.79 | 36.21 | 8.10 | 303.41 | 30.06 |
DANet(本文方法) | 70.25 | 73.23 | 33.50 | 12.94 | 179.41 | 33.25 |
表4
SAR-AIRcraft-1.0数据集上不同算法的性能比较"
对比算法 | mAP/% | DR/% | FAR/% | FLOPS(×108) | FPS | 参数量(×106) |
ATSS[ | 46.89 | 66.06 | 75.10 | 206.32 | 37.24 | 32.13 |
Deformable_DETR[ | 43.53 | 83.31 | 94.21 | 200.40 | 25.43 | 40.10 |
Faster R-CNN[ | 48.49 | 64.87 | 70.09 | 211.05 | 36.75 | 41.38 |
FCOS[ | 48.69 | 72.34 | 73.29 | 206.32 | 38.36 | 32.13 |
GFL[ | 45.49 | 65.30 | 76.10 | 209.49 | 37.18 | 32.27 |
PAA[ | 47.67 | 80.03 | 88.12 | 206.32 | 16.01 | 32.13 |
RepPoints[ | 51.11 | 77.89 | 74.56 | 193.98 | 30.89 | 36.82 |
RetinaNet[ | 46.09 | 73.41 | 81.12 | 211.53 | 38.62 | 36.45 |
YOLOF[ | 48.86 | 75.27 | 79.41 | 105.30 | 59.51 | 42.48 |
YOLOv8 | 49.73 | 68.02 | 70.34 | 140.23 | 62.78 | 30.07 |
DANet(本文方法) | 52.36 | 73.93 | 69.51 | 206.54 | 37.42 | 33.26 |
表6
SAR-AIRcraft-1.0数据集各类别实验结果对比"
类别 | 目标数量 | FCOS | DANet | |||||
AP | DR | FAR | AP | DR | FAR | |||
A330 | 31 | 73.52 | 83.91 | 28.43 | 82.63 | 90.33 | 26.38 | |
A320/321 | 52 | 48.81 | 78.83 | 86.06 | 60.11 | 88.51 | 69.63 | |
A220 | 450 | 50.48 | 83.92 | 81.82 | 54.21 | 82.22 | 73.95 | |
ARJ21 | 362 | 50.02 | 61.58 | 61.60 | 47.28 | 56.91 | 64.69 | |
Boeing737 | 550 | 31.90 | 61.62 | 94.34 | 31.84 | 60.03 | 93.02 | |
Boeing787 | 454 | 36.04 | 60.79 | 83.05 | 37.70 | 65.24 | 84.72 | |
其他 | 50.10 | 75.79 | 77.73 | 52.76 | 74.43 | 74.18 |
1 | NI J C, LUO Y, WANG D, et al. Saliencybased SAR target detection via convolutional sparse feature enhancement and bayesian inference[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5202015. |
2 | ZHOU P, WANG P, CAO J, et al. PSFNet: efficient detection of SAR image based on petty-specialized feature aggregation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17, 190- 205. |
3 | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46 (3): 839- 848. |
FANG X Y, HUANG L J. SAR ship detection algorithm based on global position information and fusion of residual feature[J]. Systems Engineering and Electronics, 2024, 46 (3): 839- 848. | |
4 | 扈琪, 胡绍海, 刘帅奇. 基于多层显著性模型的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2024, 46 (2): 478- 487. |
HU Q, HU S H, LIU S Q. Ship detection in SAR image based on multi-layer saliency model[J]. Systems Engineering and Electronics, 2024, 46 (2): 478- 487. | |
5 | ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759−9768. |
6 | ZHOU X, WANG D, KRÄHENBÜHL P, Objects as points[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1904.07850. |
7 |
REN S Q, HE K M, GIRSHICK R, et al. Faster rcnn: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
8 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019 . |
9 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 44 (4): 1922- 1933. |
10 | YANG Z, LIU S H, HU H, et al. Reppoints: point set representation for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9657−9666. |
11 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980−2988. |
12 | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2024-04-10]. https://arxiv.org/pdf/1804.02767. |
13 | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13039−13048. |
14 | LIU Y B, ZHANG F, MA L, et al. Longtailed SAR target recognition based on expert network and intra-class resampling[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 4010405. |
15 | LI Q, JIANG Z J, ZHOU X Q. Ship detection for SAR remote sensing images based oncoordinate-enhanced attention and long-short-range spatial semantic fused context[C]//Proc. of the 3rd China International SAR Symposium, 2022. |
16 | PU X Y, JIA H C, XU F. Cross-domain SAR ship detection in strong interference environment based on image-to-image translation[C]//Proc. of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2023: 1798−1801. |
17 |
ZHANG Y W, CAO Y, FENG X B, et al. SAR object detection encounters deformed complex scenes and aliased scattered power distribution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4482- 4495.
doi: 10.1109/JSTARS.2022.3157749 |
18 | WANG C, RUAN R, ZHAO Z C, et al. Category-oriented localization distillation for SAR object detection and a unified benchmark[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5211314. |
19 | SUN G C, XING M, XIA X G, et al. A unified focusing algorithm for several modes of SAR based on FrFT[J]. IEEE Trans. on Geoscience and Remote Sensing, 2012, 51 (5): 3139- 3155. |
20 | XIE Z F, WANG X Q, CHEN B. SAR ship recognition: dataset construction and long tail classification method[C]//Proc. of the 3rd International Conference on Electronics, Communications and Information Technology, 2022: 88−93. |
21 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117−2125. |
22 | 陈杰, 黄志祥, 夏润繁, 等. 大规模多类SAR目标检测数据集-1.0[EB/OL]. [2024-04-10]. https://radars.ac.cn/web/data/getData?dataType=MSAR. |
CHEN J, HUANG Z X, XIA R F, et al. Large-scale multi-class SAR image target detection dataset-1.0[EB/OL]. [2024-04-10]. https://radars.ac.cn/web/data/getData?dataType=MSAR. | |
23 |
王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率 SAR 飞机检测识别数据集[J]. 雷达学报, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043 |
WANG Z R, KANG Y Z, ZENG X, et al. SAR-AIRcraft-1.0: high-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043 |
|
24 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770−778. |
25 | CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9268−9277. |
26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132−7141. |
27 | PARK J, WOO S, LEE J Y, et al. Bam: bottleneck attention module[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1807.06514v1. |
28 | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146−3154. |
29 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3−19. |
30 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713−13722. |
31 | WU P, HUANG H H, QIAN H X, et al. SRCANet: stacked residual coordinate attention network for infrared ship detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5003614. |
32 | HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proc. of the IEEE/CVF International Conference on Computer vision, 2019: 1314−1324. |
33 | TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2024-04-10]. https://arxiv.org/abs/2301.10051. |
34 |
EVERINGHAM M, VAN GOOL L, WILLIAMS CK I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88, 303- 338.
doi: 10.1007/s11263-009-0275-4 |
35 | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMlab detection toolbox and benchmark[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1906.07155. |
36 | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2024-04-10]. https://arxiv.org/abs/2010.04159. |
37 | LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012. |
38 | KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[C]//Proc. of the 16th European Conference on Computer Vision, 2020: 355−371. |
39 |
姚群力, 胡显, 雷宏. 基于多尺度融合特征卷积神经网络的遥感图像飞机目标检测[J]. 测绘学报, 2019, 48 (10): 1266- 1274.
doi: 10.11947/j.AGCS.2019.20180398 |
YAO Q L, HU X, LEI H. Remote sensing image aircraft target detection based on multiscale fusion featureconvolutional neural network[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (10): 1266- 1274.
doi: 10.11947/j.AGCS.2019.20180398 |
[1] | 蓝舒尧, 李宇, 张春华, 迟骋, 陈春辉. 垂直阵分集束控影区探测信号发射策略[J]. 系统工程与电子技术, 2025, 47(8): 2454-2462. |
[2] | 于营, 王春平, 徐金辉, 吕述杭, 付强, 陈明. PE-Net:一种优化剪枝的实时山体滑坡检测网络[J]. 系统工程与电子技术, 2025, 47(8): 2475-2485. |
[3] | 罗颖聪, 张磊, 魏少鹏, 孟智超. 联合失配滤波器的近区低旁瓣混沌波形设计算法[J]. 系统工程与电子技术, 2025, 47(8): 2511-2518. |
[4] | 付卫红, 彭文洪, 刘乃安. 混合注意力优化的SAR图像小目标检测方法[J]. 系统工程与电子技术, 2025, 47(8): 2519-2526. |
[5] | 符小卫, 王辛夷, 乔哲. 基于APIQ算法的多无人机攻防对抗策略[J]. 系统工程与电子技术, 2025, 47(7): 2205-2215. |
[6] | 黄丰卓, 冯东, 华洋晟, 黄晓涛. 一种改进的全息SAR相位梯度自聚焦算法[J]. 系统工程与电子技术, 2025, 47(6): 1786-1795. |
[7] | 张新征, 闫梦可, 朱晓林. 噪声伪标签容忍的半监督SAR目标识别[J]. 系统工程与电子技术, 2025, 47(6): 1796-1805. |
[8] | 贾竣皓, 陈学斌, 李璋峰, 叶春茂. 空间群目标ISAR成像与检测方法[J]. 系统工程与电子技术, 2025, 47(6): 1843-1854. |
[9] | 符小卫, 王辛夷, 乔哲. 基于ASDDPG算法的多无人机对抗策略[J]. 系统工程与电子技术, 2025, 47(6): 1867-1879. |
[10] | 刘宁, 李芳芳, 李新武, 洪文. 结合足迹和相位信息的SAR高层建筑三维重建[J]. 系统工程与电子技术, 2025, 47(5): 1469-1486. |
[11] | 韩静雯, 杨勇, 连静, 王威. 大掠射角下幅相极化特征融合雷达导引头舰船检测方法[J]. 系统工程与电子技术, 2025, 47(4): 1127-1135. |
[12] | 何肖阳, 陈小龙, 杜晓林, 苏宁远, 袁旺, 关键. 基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法[J]. 系统工程与电子技术, 2025, 47(4): 1155-1167. |
[13] | 贾钰嘉, 张思乾, 唐涛, 匡纲要. 强化散射特征的机载SAR实传图像盲超分辨重建[J]. 系统工程与电子技术, 2025, 47(3): 753-767. |
[14] | 杨志伟, 杨安东, 梁庚辰, 李相海, 李晓蕊, 刘杰. 多子带融合解动目标径向速度模糊方法[J]. 系统工程与电子技术, 2025, 47(3): 788-796. |
[15] | 陈世龙, 刘霖, 王晓蓓, 曾翰森, 刘亚波, 刘翔. 脉间捷变频SAR快速补偿频域成像处理算法[J]. 系统工程与电子技术, 2025, 47(3): 797-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||