系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2519-2526.doi: 10.12305/j.issn.1001-506X.2025.08.10

• 传感器与信号处理 • 上一篇    

混合注意力优化的SAR图像小目标检测方法

付卫红(), 彭文洪(), 刘乃安()   

  1. 西安电子科技大学通信工程学院,陕西 西安 710071
  • 收稿日期:2024-06-03 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 付卫红 E-mail:whfu@mail.xidian.edu.cn;wenhongpeng@126.com;naliu@mail.xidian.edu.cn
  • 作者简介:彭文洪(2000—),女,硕士研究生,主要研究方向为基于深度学习的图像目标检测
    刘乃安(1966—),男,教授,硕士,主要研究方向为无线通信与射频电路、宽带无线互联网协议网络与技术

SAR image small target detection method with hybrid attention optimization

Weihong FU(), Wenhong PENG(), Naian LIU()   

  1. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
  • Received:2024-06-03 Online:2025-08-25 Published:2025-09-04
  • Contact: Weihong FU E-mail:whfu@mail.xidian.edu.cn;wenhongpeng@126.com;naliu@mail.xidian.edu.cn

摘要:

近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar, SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO (you only look once) v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LS-SSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。

关键词: 合成孔径雷达图像, 船舶检测, 注意力机制, 特征融合, 小目标检测

Abstract:

In recent years, convolutional neural network (CNN) achieves remarkable success in synthetic aperture radar (SAR) image ship detection. However, there are still considerable challenges in detecting small targets. Regarding this, an improved detection network based on you only look once (YOLO) v5, combining the spatial-aware channel attention (SCA), self-attention mechanism, and contextual feature fusion (CFF) strategy to enhance the detection performance of small ships. Firstly, SCA improves detection accuracy by suppressing background information and highlighting target-related features. Secondly, self-attention module is introduced in the backbone network and detection lager of YOLOv5 to capture global information and enhance localization capabilities. Finally, by fusing shallow and deep features, the compensates for the loss of small target information during feature extraction, further improving detection accuracy. Experimental results based on the LS-SSDDv1.0 dataset show that the improved network achieves a mean average precision (mAP) 0.5 of 78.9%, significantly outperforming existing methods.

Key words: synthetic aperture radar (SAR) image, ship detection, attention mechanism, feature fusion, small target detection

中图分类号: