1 |
ZHANG T W, ZHANG X L, LI J, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690
|
2 |
DI-BISCEGLIE M, GALDI C. CFAR detection of extended objects in high-resolution SAR images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43 (4): 833- 843.
doi: 10.1109/TGRS.2004.843190
|
3 |
XU M H, ZHU J, FANG J, et al. CFAR based NOMP for line spectral estimation and detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (5): 6971- 6990.
|
4 |
RIHAN M Y, NOSSAIR Z B, MUBARAK R I. An improved CFAR algorithm for multiple environmental conditions[J]. Signal, Image and Video Processing, 2024, 18 (4): 3383- 3393.
doi: 10.1007/s11760-024-03001-x
|
5 |
宋志娜, 眭海刚, 李永成. 高分辨率可见光遥感图像舰船目标检测综述[J]. 武汉大学学报(信息科学版), 2021, 46 (11): 1703- 1715.
|
|
SONG Z N, SUI H G, LI Y C. A review of ship target detection in high-resolution visible light remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (11): 1703- 1715.
|
6 |
XU D Q, WU Y Q. Research progress of deep learning algorithms for optical remote sensing image target detection[J]. Journal of Remote Sensing, 2024, 28 (12): 3405.
|
7 |
GUO H Y, YANG X, WANG N N, et al. A CenterNet++ model for ship detection in SAR images[J]. Pattern Recognition, 2021, 112, 107787.
doi: 10.1016/j.patcog.2020.107787
|
8 |
LI D, LIANG Q H, LIU H Q, et al. A novel multidimensional domain deep learning network for SAR ship detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5203213.
|
9 |
JIANG Z J, WANG Y P, ZHOU X, et al. Small-scale ship detection for SAR remote sensing images based on coordinate-aware mixed attention and spatial semantic joint context[J]. Smart Cities, 2023, 6 (3): 1612- 1629.
doi: 10.3390/smartcities6030076
|
10 |
GAO S, LIU J M, MIAO Y H, et al. A high-effective implementation of ship detector for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4019005.
|
11 |
FANG H Z, LIAO Z, WANG X H, et al. Differentiated attention guided network over hierarchical and aggregated features for intelligent UAV surveillance[J]. IEEE Trans. on Industrial Informatics, 2023, 19 (9): 9909- 9920.
doi: 10.1109/TII.2022.3232777
|
12 |
VASWANI A, SHAZEER N, PARMAR N. Attention is all you need[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000−6010.
|
13 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936−944.
|
14 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759−8768.
|
15 |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshops, 2021: 2778−2788.
|
16 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
17 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]. Cham, Switzerland: Springer, 2018.
|
18 |
NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452, 48- 62.
doi: 10.1016/j.neucom.2021.03.091
|
19 |
HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 45 (1): 87- 110.
|
20 |
LIU Z, NING J, CAO Y, et al. Video swin transformer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3202−3211.
|
21 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-05-03]. https://arxiv.org/abs/2010.11929.
|
22 |
ZHANG Y, ZHU G Y, SHI T J, et al. Remote sensing image small target detection based on feature fusion and attention[J]. Acta Optica Sinica, 2022, 42 (24): 2415001.
doi: 10.3788/AOS202242.2415001
|
23 |
ZHANG T W, ZHANG X L, KE X, et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12 (18): 2997.
doi: 10.3390/rs12182997
|
24 |
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2022, 44 (10): 3697- 3708.
|
25 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
26 |
WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10183−10192.
|
27 |
SU N, HE J Y, YAN Y M, et al. SII-Net: spatial information integration network for small target detection in SAR images[J]. Remote Sensing, 2022, 14 (3): 442.
doi: 10.3390/rs14030442
|
28 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2024-05-03]. https://arxiv.org/abs/2004.10934.
|
29 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464−7475.
|
30 |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-05-03]. http://arxiv.org/abs/2107.08430.
|