系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1155-1167.doi: 10.12305/j.issn.1001-506X.2025.04.12

• 传感器与信号处理 • 上一篇    下一篇

基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法

何肖阳1, 陈小龙2,*, 杜晓林1, 苏宁远1, 袁旺1, 关键2   

  1. 1. 烟台大学计算机与控制工程学院, 山东 烟台 264005
    2. 海军航空大学, 山东 烟台 264001
  • 收稿日期:2024-02-03 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 陈小龙
  • 作者简介:何肖阳 (1999—), 男, 硕士研究生, 主要研究方向为海杂波背景下目标检测
    陈小龙 (1985—), 男, 教授, 博士, 主要研究方向为雷达低慢小目标检测、海杂波抑制、雷达智能信号处理
    杜晓林 (1985—), 男, 副教授, 硕士研究生导师, 博士, 主要研究方向为雷达信号处理、波形设计、协方差矩阵估计
    苏宁远 (1995—), 男, 博士研究生, 主要研究方向为雷达智能信号处理、海面目标检测
    袁旺 (1997—), 男, 硕士研究生, 主要研究方向为高分辨雷达无人机等低慢小目标多特征融合识别
    关键 (1968—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为雷达目标检测与跟踪、侦察图像处理、信息融合
  • 基金资助:
    国家自然科学基金(62222120);山东省自然科学基金(ZR2024JQ003)

Classification of maritime micromotion target based on transfer learning in CBAM-Swin-Transformer

Xiaoyang HE1, Xiaolong CHEN2,*, Xiaolin DU1, Ningyuan SU1, Wang YUAN1, Jian GUAN2   

  1. 1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China
    2. Naval Aviation University, Yantai 264001, China
  • Received:2024-02-03 Online:2025-04-25 Published:2025-05-28
  • Contact: Xiaolong CHEN

摘要:

雷达作为海上目标监测和识别的重要手段, 海上目标运动特征精细化描述与分类是其关键技术。基于深度学习的卷积网络分类方法不依赖于模型, 但仍难以适应复杂多变的海洋环境、多样性海上目标, 泛化能力有限。将卷积注意力机制模块(convolutional block attention module, CBAM)融入Swin-Transformer网络, 并基于迁移学习(transfer learning, TL)策略, 提出一种兼顾舰船目标和低空旋翼飞行目标的海上微动目标分类方法(简称为TL-CBAM-Swin-Transformer), 提升多种观测条件下的模型分类适应能力。首先, 建立海上微动目标模型, 并基于3种雷达实测数据构建海面非匀速平动、三轴转动、直升机、固定翼无人机的微动时频数据集。然后, 设计TL-CBAM-Swin-Transformer网络, CBAM从通道维和空间维提取特征, 提高其小尺度中多头注意力信息的提取能力。实测数据验证结果表明, 相比Swin-Transformer,所提网络的分类准确度提升3.43%。采用TL法, 将所提网络在ImageNet数据上进行预训练, 将智能像素处理(intelligent pixel processing, IPIX)雷达微动目标作为源域进行预训练,并迁移至科学与工业研究委员会(Council for Scientific and Industrial Research, CSIR)雷达微动目标, 分类概率达97.9%, 将直升机旋翼作为源域进行预训练并迁移至固定翼无人机, 分类概率达98.8%, 验证了所提算法具有较强的泛化能力。

关键词: 雷达目标分类, 海上微动目标, 迁移学习, Swin-Transformer网络, 注意力机制, 时频分析

Abstract:

As an important means for maritime target detection and identification, radar requires fine-grained description and classification of the motion characteristics of maritime targets, which is a key technology. Deep learning-based convolutional network classification method, although model-independent, still struggle to adapt to the complex and diverse maritime environment and the variety of maritime targets, with limited generalization ability. Convolutional block attention module (CBAM) is integrated into the Swin-Transformer network, and based on transfer learning (TL) strategy, a maritime micromotion target classification method (TL-CBAM-Swin-Transformer) is proposed to consider both ship targets and low-altitude rotorcraft flight targets, thereby enhancing the model classification adaptability under various observation conditions. Firstly, a maritime micromotion target model is established, and based on three radar measurement data sets, micromotion time-frequency datasets of sea surface non-uniform translational motion, three-axis rotation, helicopters, and fixed rotor drones are constructed. Then, the TL-CBAM-Swin-Transformer network is designed, where CBAM extracts features from both the channel and spatial dimensions, enhancing its ability to extract multi-head attention information at small scales. Experimental data verification result shows that compared to Swin-Transformer, the classification accuracy of the proposed algorithm is improved by 3.43%. By using TL method, the proposed network is pre-trained on the ImageNet dataset and is transferred to Council for Scientific and Industrial Research (CSIR) micromotion targets with intelligent pixel processing (IPIX) radar micromotion targets as the source domain for pre-training, achieving a classification probability of 97.9%. With helicopter rotors as the source domain for pre-training, the proposed algorithm transfer to fixed rotorcraft drones, achieving a classification probability of 98.8%, which vadidates the strong generalization ability of the proposed algorithm.

Key words: radar target classification, maritime micromotion target, transfer learning (TL), Swin-Transformer network, attention mechanism, time-frequency analysis

中图分类号: