系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 842-854.doi: 10.12305/j.issn.1001-506X.2025.03.16
• 系统工程 • 上一篇
冯蕴雯, 潘维煌, 路成, 刘佳奇
收稿日期:
2023-10-18
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
潘维煌
作者简介:
冯蕴雯 (1968—), 女, 教授, 博士, 主要研究方向为飞机可靠性维修性工程、系统工程基金资助:
Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU
Received:
2023-10-18
Online:
2025-03-28
Published:
2025-04-18
Contact:
Weihuang PAN
摘要:
当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移学习模型,用于故障诊断与定位,以提升状态监控能力与故障诊断效率。首先,分析液压系统原理,依据机组操作手册(flight crew operating manual, FCOM)额定参数与监测数据建立运行监控指标,采用决策树模型监控液压系统的运行状态;随后通过故障形成条件梳理成逻辑图,结合逻辑图的输入信号参数采集快速存取记录器(quick access recorder, QAR)数据,开发迁移学习模型实现故障诊断与定位。最后以某型国产民机液压低压故障为例,验证了所提方法的应用效果。结果表明,该运行状态监控方法能有效量化液压系统状态,故障诊断方法则能高效识别故障原因。
中图分类号:
冯蕴雯, 潘维煌, 路成, 刘佳奇. 基于故障逻辑的民机液压状态监控与故障诊断[J]. 系统工程与电子技术, 2025, 47(3): 842-854.
Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU. Civil aircraft hydraulic state monitoring and fault diagnosis based on fault logic[J]. Systems Engineering and Electronics, 2025, 47(3): 842-854.
表5
1号液压系统故障诊断采集数据样例"
序号 | EDP_low | ACMP_low | HYD_P_1 | Eng | ACMP_E | ACMP_ON | COUNT_ACMP_ON | Plane_stats | Plane_V | COUNT_Fault_time | classification |
1 | NOT-LOW | LOW | 3 036 | 57.9 | OFF | OFF | 0 | GND | 0 | 0 | NO |
2 | NOT-LOW | LOW | 3 027 | 52.9 | OFF | OFF | 0 | GND | 0 | 0 | NO |
3 | NOT-LOW | LOW | 3 032 | 48.7 | OFF | OFF | 0 | GND | 0 | 0 | NO |
4 | LOW | LOW | 3 061 | 95.8 | OFF | OFF | 0 | GND | 0 | 0 | NO |
5 | LOW | LOW | 3 061 | 95.9 | OFF | OFF | 0 | GND | 0 | 0 | NO |
6 | LOW | LOW | 3 061 | 95.9 | OFF | OFF | 0 | GND | 0 | 1 | Fault1 |
7 | LOW | LOW | 3 061 | 95.9 | OFF | OFF | 0 | GND | 0 | 1 | Fault1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
38 682 | LOW | LOW | 1 750 | 0 | ON | ON | 1 | AIR | 268.5 | 1 | Fault92 |
38 725 | LOW | LOW | 1 750 | 96 | ON | ON | 1 | AIR | 268.5 | 1 | Fault93 |
1 | 冯蕴雯, 刘佳奇, 潘维煌, 等. 民用飞机运行可靠性研究进展[J]. 国防科技大学学报, 2023, 45 (4): 66- 93. |
FENG Y W , LIU J Q , PAN W H , et al. Research progress of operational reliability of civil aircraft[J]. Journal of National University of Defense Technology, 2023, 45 (4): 66- 93. | |
2 |
PAN W H , FENG Y W , LIU J Q , et al. Operation reliability monitoring towards fault diagnosis of airplane hydraulic system using quick access recorder flight data[J]. Measurement Science and Technology, 2023, 34, 055111.
doi: 10.1088/1361-6501/acb83c |
3 | PAN W H , FENG Y W , LIU J Q , et al. Analyzing the operation reliability of aeroengine using quick access recorder flight data[J]. Reliability Engineering & System Safety, 2023, 235, 109193. |
4 |
LEE H , LIM H J , CHATTOPADHYAY A . Data-driven system health monitoring technique using autoencoder for the safety management of commercial aircraft[J]. Neural Computing and Applications, 2021, 33, 3235- 3250.
doi: 10.1007/s00521-020-05186-x |
5 |
BALAKRISHNAN N , DEVASIGAMANI A I , ANUPAMA K R , et al. Aero-engine health monitoring with real flight data using whale optimization algorithm based artificial neural network technique[J]. Optical Memory and Neural Networks, 2021, 30, 80- 96.
doi: 10.3103/S1060992X21010094 |
6 |
LIU Z C , SHAO T P , YIN L X , et al. Local structural health monitoring system in aircraft based on fiber Bragg grating array[J]. Results in Optics, 2023, 11, 100393.
doi: 10.1016/j.rio.2023.100393 |
7 |
WANG Y , QIU L , LUO Y J , et al. A piezoelectric sensor network with shared signal transmission wires for structural health monitoring of aircraft smart skin[J]. Mechanical Systems and Signal Processing, 2020, 141, 106730.
doi: 10.1016/j.ymssp.2020.106730 |
8 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43 (9): 625573. |
CAO M , HUANG J Q , ZHOU J , et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43 (9): 625573. | |
9 | 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43 (8): 626565. |
LIN J , ZHANG B Y , ZHANG D Y , et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (8): 626565. | |
10 |
AHMED U , ALI F , JENNIONS I . Acoustic monitoring of an aircraft auxiliary power unit[J]. ISA Transactions, 2023, 137, 670- 691.
doi: 10.1016/j.isatra.2023.01.014 |
11 | 贾宝惠, 姜番, 王玉鑫, 等. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44 (5): 326598. |
JIA B H , JIANG F , WANG Y X , et al. Fault diagnosis method based on civil aircraft maintenance text data[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (5): 326598. | |
12 | 聂同攀, 曾继炎, 程玉杰, 等. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J]. 航空学报, 2022, 43 (8): 625499. |
NIE T P , ZENG J Y , CHENG Y J , et al. Knowledge graph construction technology and its application in aircraft power system fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (8): 625499. | |
13 |
DONG Y T , JIANG H K , MU M Z , et al. Multi-sensor data fusion-enabled lightweight convolutional double regularization contrast transformer for aerospace bearing small samples fault diagnosis[J]. Advanced Engineering Informatics, 2024, 62, 102573.
doi: 10.1016/j.aei.2024.102573 |
14 | DONG Y T , JIANG H K , JIANG W X , et al. Dynamic normalization supervised contrastive network with multiscale compound attention mechanism for gearbox imbalanced fault diagnosis[J]. Advanced Engineering Informatics, 2024, 133, 108098. |
15 |
WANG S Q , LIAN G G , CHENG C , et al. A novel method of rolling bearings fault diagnosis based on singular spectrum decomposition and optimized stochastic configuration network[J]. Neurocomputing, 2024, 574, 127278.
doi: 10.1016/j.neucom.2024.127278 |
16 |
KOSOVA F , UNVER H O . A digital twin framework for aircraft hydraulic systems failure detection using machine learning techniques[J]. Proc.of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237 (7): 1563- 1580.
doi: 10.1177/09544062221132697 |
17 | YAN H S , SUN J Z , ZUO H F . Anomaly detection based on multivariate data for the aircraft hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers Part Ⅰ-Journal of Systems and Control Engineering, 2020, 235 (5): 593- 605. |
18 |
YU Y , HAMID R K , SHI P M , et al. A new multi-source information domain adaption network based on domain attributes and features transfer for cross-domain fault diagnosis[J]. Mechanical Systems and Signal Processing, 2024, 211, 111194.
doi: 10.1016/j.ymssp.2024.111194 |
19 | ARATHI A. Remaining useful life prediction of aircraft engines based on transfer learning[D]. Gainesville: Virginia State University, 2022. |
20 |
HUO C R , JIANG Q S , SHEN Y H , et al. Enhanced transfer learning method for rolling bearing fault diagnosis based on linear superposition network[J]. Engineering Applications of Artificial Intelligence, 2023, 121, 105970.
doi: 10.1016/j.engappai.2023.105970 |
21 |
HUO C R , JIANG Q S , SHEN Y H , et al. A class-level matching unsupervised transfer learning network for rolling bearing fault diagnosis under various working conditions[J]. Applied Soft Computing, 2023, 146, 110739.
doi: 10.1016/j.asoc.2023.110739 |
22 | AIRIN D. Data-driven methods for probabilistic fault diagnosis in multirotor aircraft[D]. New York: Rensselaer Polytechnic Institute, 2022. |
23 | SAKIB A Z. Pushing the boundaries of sparse sensor array based structural health monitoring via physics-informed deep learning[D]. Raleigh: North Carolina State University, 2022. |
24 |
LIU D , ZHONG S S , LIN L , et al. Feature-level SMOTE: augmenting fault samples in learnable feature space for imbalanced fault diagnosis of gas turbines[J]. Expert Systems with Applications, 2024, 238, 122023.
doi: 10.1016/j.eswa.2023.122023 |
25 | FREEMAN B. A framework for non-intrusive ocean current turbine rotor blade imbalance fault detection[D]. Florida: Florida Atlantic University, 2022. |
26 | AMRUTHNATH N. Embedded fault class detection methodology for condition-based machine monitoring and predictive maintenance[D]. Kalamazoo: Western Michigan University, 2019. |
27 | CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. |
28 |
MA L M , JIANG B , XIAO L F , et al. Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 200, 110490.
doi: 10.1016/j.ymssp.2023.110490 |
29 |
WU Z H , JIANG H K , LIU S W , et al. Conditional distribution-guided adversarial transfer learning network with multi-source domains for rolling bearing fault diagnosis[J]. Advanced Engineering Informatics, 2023, 56, 101993.
doi: 10.1016/j.aei.2023.101993 |
30 | PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. |
31 | 李航. 机器学习方法[M]. 北京: 清华大学出版社, 2024. |
LI H . Machine learning: the art of scientific computing[M]. Beijing: Tsinghua University Press, 2024. |
[1] | 宋怡佳, 王海燕, 冯伟, 全英汇. 基于高光谱跨场景迁移学习的集成对齐子空间自适应算法[J]. 系统工程与电子技术, 2025, 47(2): 369-375. |
[2] | 王俊智, 仲伟志, 肖丽君, 王鑫, 朱秋明, 林志鹏. 基于迁移学习的室内波束选择优化方法[J]. 系统工程与电子技术, 2024, 46(3): 1109-1115. |
[3] | 冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725. |
[4] | 杨立儒, 刘永祥, 杨威. 基于迁移学习的雷达杂波幅度统计模型选择[J]. 系统工程与电子技术, 2022, 44(8): 2457-2467. |
[5] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[6] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[7] | 何立, 沈亮, 李辉, 王壮, 唐文泉. 强化学习中的策略重用: 研究进展[J]. 系统工程与电子技术, 2022, 44(3): 884-899. |
[8] | 吴涛, 王伦文, 朱敬成. 基于迁移学习和注意力机制的伪装图像分割[J]. 系统工程与电子技术, 2022, 44(2): 376-384. |
[9] | 焦志强, 张杰勇, 姚佩阳, 王勋, 何宜超. 基于分层结构的C4ISR服务部署分布式演化方法[J]. 系统工程与电子技术, 2021, 43(6): 1572-1585. |
[10] | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43(3): 603-609. |
[11] | 晏媛, 孙俊, 孙晶明, 于俊朋. 雷达小样本目标识别方法及应用分析[J]. 系统工程与电子技术, 2021, 43(3): 684-692. |
[12] | 施赛楠, 董泽远, 杨静, 杨春娇. 基于时频图自主学习的海面小目标检测[J]. 系统工程与电子技术, 2021, 43(1): 33-41. |
[13] | 苏娟, 杨龙, 黄华, 金国栋. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42(5): 1026-1034. |
[14] | 顾涛勇, 郭建胜, 李正欣, 王健, 王腾蛟. 基于插值-拟合-迁移学习算法的机载设备故障概率预测[J]. 系统工程与电子技术, 2018, 40(1): 114-118. |
[15] | 任俊, 胡晓峰, 朱丰. 基于深度学习特征迁移的装备体系效能预测[J]. 系统工程与电子技术, 2017, 39(12): 2745-2749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||