1 |
何同弟, 李见为. 基于自适应稀疏表示的高光谱遥感图像分类[J]. 系统工程与电子技术, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32
|
|
HE T D , LI J W . Hyperspectral remote sensing image classification based on adaptive sparse representation[J]. Systems Engineering and Electronics, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32
|
2 |
冯伟, 龙以君, 全英汇, 等. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45 (12): 3715- 3725.
|
|
FENG W , LONG Y J , QUAN Y H , et al. Multi-class imba-lance remote sensing image classification based on SMOTE and deep transfer convolutional neural network[J]. Systems Engineering and Electronics, 2023, 45 (12): 3715- 3725.
|
3 |
MENG Z H, YE M C, YAO F T, et al. Cross-scene hyperspectral image classification based on cycle-consistent adversarial networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 1912-1915.
|
4 |
于纯妍, 徐铭阳, 宋梅萍, 等. 对抗与蒸馏耦合的高光谱遥感域自适应分类方法[J]. 遥感学报, 2024, 28 (1): 231- 246.
|
|
YU C Y , XU M Y , SONG M P , et al. Unsupervised domain adaptive classification for hyperspectral remote sensing by adversary coupled with distillation[J]. National Remote Sensing Bulletin, 2024, 28 (1): 231- 246.
|
5 |
CHEN J B, YE M C, LU H J, et al. Cross-scene relationship mining with learning graph net for hyperspectral image classification[C]//Proc. of the 2nd International Conference on Artificial Intelligence and Computer Engineering, 2021: 519-524.
|
6 |
ZHANG Y X , LI W , TAO R , et al. Cross-scene hyperspectral image classification with discriminative cooperative alignment[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (11): 9646- 9660.
doi: 10.1109/TGRS.2020.3046756
|
7 |
SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[EB/OL]. [2023-11-22]. https://arXiv, 2016: 1607.01719.
|
8 |
FENG W , QUAN Y H , DAUPHIN G , et al. Semi-supervised rotation forest based on ensemble margin theory for the classification of hyperspectral image with limited training data[J]. Information Sciences, 2021, 575, 611- 638.
doi: 10.1016/j.ins.2021.06.059
|
9 |
PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans. on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359.
|
10 |
PAN S J , TSANG I W , KWOK J T , et al. Domain adaptation via transfer component analysis[J]. IEEE Trans. on Knowledge and Data Engineering, 2011, 22 (2): 199- 210.
|
11 |
LONG M S, WANG J, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]//Proc. of the IEEE International Conference on Computer Vision, 2013: 2200-2207.
|
12 |
TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[EB/OL]. [2023-12-01]. https://arXiv, 2014: 1412.3474.
|
13 |
LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[EB/OL]. [2023-12-01]. https://arXiv, 2015: 1502.02791.
|
14 |
WANG J D, CHEN Y Q, HU L S, et al. Stratified transfer learning for cross-domain activity recognition[C]//Proc. of the IEEE International Conference on Pervasive Computing and Communications, 2018.
|
15 |
SCHÖLKOPF B, PLATT J, HOFMANN T. A kernel method for the two-sample-problem[C]//Proc. of the Advances in Neural Information Processing Systems, 2007: 513-520.
|
16 |
ZHANG Y X , LI W , ZHANG M M , et al. Topological structure and semantic information transfer network for cross-scene hyperspectral image classification[J]. IEEE Trans. on Neural Networks and Learning Systems, 2023, 34 (6): 2817- 2830.
doi: 10.1109/TNNLS.2021.3109872
|
17 |
ZHAO C H , QIN B A , FENG S , et al. An unsupervised domain adaptation method towards multi-level features and decision boundaries for cross-scene hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 5546216.
|
18 |
YU C Y , LIU C Y , SONG M P , et al. Unsupervised domain adaptation with content-wise alignment for hyperspectral ima-gery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 5511705.
|
19 |
吕勤哲, 全英汇, 沙明辉, 等. 基于集成深度学习的有源干扰智能分类[J]. 系统工程与电子技术, 2022, 44 (12): 3595- 3602.
doi: 10.12305/j.issn.1001-506X.2022.12.02
|
|
LYU Q Z , QUAN Y H , SHA M H , et al. Ensemble deep learning-based intelligent classification of active jamming[J]. Systems Engineering and Electronics, 2022, 44 (12): 3595- 3602.
doi: 10.12305/j.issn.1001-506X.2022.12.02
|
20 |
BREIMAN L . Bagging predictors[M]. New York: Machine Learning, 1996.
|
21 |
DONG S X , FENG W , QUAN Y H , et al. Deep ensemble CNN method based on sample expansion for hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5531815.
|
22 |
FENG W , HUANG W J , BAO W X . Imbalanced hyperspectral image classification with an adaptive ensemble method based on SMOTE and rotation forest with differentiated sampling rates[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1879- 1883.
doi: 10.1109/LGRS.2019.2913387
|
23 |
陈华杰, 吕丹妮, 周枭, 等. 遥感图像小样本舰船识别跨域迁移学习算法[J]. 遥感学报, 2024, 28 (3): 793- 804.
|
|
CHEN H J , LYU D N , ZHOU X , et al. Cross-domain transfer learning algorithm for few-shot ship recognition in remote-sensing images[J]. National Remote Sensing Bulletin, 2024, 28 (3): 793- 804.
|
24 |
FENG W , DAUPHIN G , HUANG W J , et al. Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (7): 2159- 2169.
doi: 10.1109/JSTARS.2019.2922297
|
25 |
FRANCISCO C , ANTONIO J R , MARÍA J , et al. Addressing imbalance in multilabel classification: measures and random resampling algorithms[J]. Neurocomputing, 2015, 163, 3- 16.
doi: 10.1016/j.neucom.2014.08.091
|
26 |
DEBES C , MERENTITIS A , HEREMANS R , et al. Hyperspectral and LiDAR data fusion: outcome of the 2013 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6): 2405- 2418.
doi: 10.1109/JSTARS.2014.2305441
|
27 |
LE SAUX B , YOKOYA N , HANSCH R , et al. 2018 IEEE GRSS data fusion contest: multimodal land use classification[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6 (1): 52- 54.
doi: 10.1109/MGRS.2018.2798161
|
28 |
KARANTZALOS K, KARAKIZI C, KANDYLAKIS Z, et al. HyRANK hyperspectral satellite dataset I (version V001)[data set][J]. Journal of Photogrammetry and Remote Sensing, 2018. DOI: 10.5281/zenodo.1222202.
|
29 |
JOHAN A K S . Support vector machines: a nonlinear modelling and control perspective[J]. European Journal of Control, 2001, 7 (2): 311- 327.
|
30 |
COVER T , HART P . Nearest neighbor pattern classification[J]. IEEE Trans. on Information Theory, 1967, 13 (1): 21- 27.
doi: 10.1109/TIT.1967.1053964
|