系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 842-854.doi: 10.12305/j.issn.1001-506X.2025.03.16

• 系统工程 • 上一篇    

基于故障逻辑的民机液压状态监控与故障诊断

冯蕴雯, 潘维煌, 路成, 刘佳奇   

  1. 西北工业大学航空学院, 陕西 西安 710072
  • 收稿日期:2023-10-18 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 潘维煌
  • 作者简介:冯蕴雯 (1968—), 女, 教授, 博士, 主要研究方向为飞机可靠性维修性工程、系统工程
    潘维煌 (1993—), 男, 博士研究生, 主要研究方向为飞机运行支持、飞机维修性工程
    路成 (1989—), 男, 博士后, 主要研究方向为可靠性分析、维修性工程
    刘佳奇 (1993—), 男, 博士研究生, 主要研究方向为飞机可靠性、飞机维修性工程
  • 基金资助:
    国家自然科学基金(51875465);上海民用飞机健康监控工程技术研究中心(GCZX-2022-01)

Civil aircraft hydraulic state monitoring and fault diagnosis based on fault logic

Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2023-10-18 Online:2025-03-28 Published:2025-04-18
  • Contact: Weihuang PAN

摘要:

当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移学习模型,用于故障诊断与定位,以提升状态监控能力与故障诊断效率。首先,分析液压系统原理,依据机组操作手册(flight crew operating manual, FCOM)额定参数与监测数据建立运行监控指标,采用决策树模型监控液压系统的运行状态;随后通过故障形成条件梳理成逻辑图,结合逻辑图的输入信号参数采集快速存取记录器(quick access recorder, QAR)数据,开发迁移学习模型实现故障诊断与定位。最后以某型国产民机液压低压故障为例,验证了所提方法的应用效果。结果表明,该运行状态监控方法能有效量化液压系统状态,故障诊断方法则能高效识别故障原因。

关键词: 状态监控, 故障诊断与定位, 逻辑图, 监测参数, 迁移学习

Abstract:

Current monitoring data from civil aircraft are difficult to effectively apply to condition monitoring and fault diagnosis, which limits improvements in safety and reliability. To address this, this paper proposes a decision tree model based on hydraulic system component design and monitoring data to achieve operational condition monitoring of the hydraulic system. Additionally, a transfer learning model based on fault logic and operational data is proposed for fault diagnosis and localization, aiming to enhance condition monitoring capabilities and fault diagnosis efficiency. First, the principles of the hydraulic system are analyzed, and operational monitoring indicators are established based on rated parameters from the Flight Crew Operating Manual (FCOM) and monitoring data, with a decision tree model employed to monitor the hydraulic system's operational condition. Subsequently, fault formation conditions are organized into a logic diagram, and data from the Quick Access Recorder (QAR) are collected in conjunction with the input signal parameters of the logic diagram to develop a transfer learning model for fault diagnosis and localization. Finally, the proposed methods are validated using a case study of a hydraulic low-pressure fault in a specific type of domestically produced civil aircraft. The results demonstrate that the condition monitoring method effectively quantifies the hydraulic system's operational state, while the fault diagnosis method efficiently identifies the causes of faults.

Key words: state monitoring, fault diagnosis and localization, logic diagram, monitoring parameters, transfer learning

中图分类号: