系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2165-2175.doi: 10.12305/j.issn.1001-506X.2025.07.10

• 传感器与信号处理 • 上一篇    

基于特征融合的Fast-CNN的复杂波形调制识别

周东平, 阮航, 沙明辉, 王崇宇, 崔念强, 鲁耀兵   

  1. 北京无线电测量研究所, 北京 100854
  • 收稿日期:2024-07-09 出版日期:2025-07-16 发布日期:2025-07-22
  • 通讯作者: 阮航
  • 作者简介:周东平 (1997—), 男, 博士研究生, 主要方向为电子对抗
    阮航 (1988—), 男, 高级工程师, 博士, 主要研究方向为电子对抗
    沙明辉 (1986—), 男, 研究员, 博士, 主要研究方向为电子对抗、雷达抗干扰
    王崇宇 (1996—), 男, 工程师, 硕士, 主要研究方向为电子对抗、雷达对抗
    崔念强 (1996—), 男, 工程师, 硕士, 主要研究方向为电子对抗、雷达对抗
    鲁耀兵 (1965—), 男, 研究员, 博士, 主要研究方向为雷达系统总体设计

Complex waveform modulation recognition based on feature fusion with Fast-CNN

Dongping ZHOU, Hang RUAN, Minghui SHA, Chongyu WANG, Nianqiang CUI, Yaobing LU   

  1. Beijing Institute of Radio Measurement, Beijing 100854, China
  • Received:2024-07-09 Online:2025-07-16 Published:2025-07-22
  • Contact: Hang RUAN

摘要:

针对复杂电磁环境中, 雷达信号种类复杂、形式敏捷多变, 导致信号识别率较低与运算复杂度较高的问题, 提出一种基于特征融合的快速卷积神经网络(fast-convolutional neural network, Fast-CNN)的复杂波形调制识别方法。首先, 设计规模较大的教师网络(特征融合网络)和规模较小的学生网络(Fast-CNN)。教师网络提取并融合特征图的不同尺度特征, 提高网络识别率; 学生网络通过剪枝方法去除冗余通道, 解决计算量较大的问题。然后, 通过知识蒸馏将教师网络训练得来的知识转移到学生网络中, 从而网络能在显著降低计算量的同时保持识别精度。实验表明, 当信噪比大于-3 dB时, 所提方法对10类复杂调制波形的整体识别率达到99%以上。

关键词: 复杂波形, 调制识别, 特征融合, 网络剪枝, 知识蒸馏

Abstract:

Aiming at the complex electromagnetic environment, the radar signals are complex in type and agile in form, which leads to the problem of lower signal recognition rate and higher arithmetic complexity, a complex waveform modulation recognition method based on fast-convolutional neural network (Fast-CNN) with feature fusion is proposed. Firstly, a larger teacher network (feature fusion network) and a smaller student network (Fast-CNN) are designed. The teacher network extracts and fuses the different scale features of the feature map to improve the network recognition rate. The student network removes the redundant channels by pruning method to solve the problem of larger computation. Then, the knowledge trained in the teacher network is transferred to the student network through knowledge distillation. Thus, the network can significantly reduce the amount of computation while maintaining the recognition accuracy. Experiments show that the overall recognition rate of the proposed method for 10 types of complex modulated waveforms reaches more than 99% when the signal-to-noise ratio is greater than -3 dB.

Key words: complex waveform, modulation recognition, feature fusion, network pruning, knowledge distillation

中图分类号: