系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2165-2175.doi: 10.12305/j.issn.1001-506X.2025.07.10
• 传感器与信号处理 • 上一篇
周东平, 阮航, 沙明辉, 王崇宇, 崔念强, 鲁耀兵
收稿日期:
2024-07-09
出版日期:
2025-07-16
发布日期:
2025-07-22
通讯作者:
阮航
作者简介:
周东平 (1997—), 男, 博士研究生, 主要方向为电子对抗Dongping ZHOU, Hang RUAN, Minghui SHA, Chongyu WANG, Nianqiang CUI, Yaobing LU
Received:
2024-07-09
Online:
2025-07-16
Published:
2025-07-22
Contact:
Hang RUAN
摘要:
针对复杂电磁环境中, 雷达信号种类复杂、形式敏捷多变, 导致信号识别率较低与运算复杂度较高的问题, 提出一种基于特征融合的快速卷积神经网络(fast-convolutional neural network, Fast-CNN)的复杂波形调制识别方法。首先, 设计规模较大的教师网络(特征融合网络)和规模较小的学生网络(Fast-CNN)。教师网络提取并融合特征图的不同尺度特征, 提高网络识别率; 学生网络通过剪枝方法去除冗余通道, 解决计算量较大的问题。然后, 通过知识蒸馏将教师网络训练得来的知识转移到学生网络中, 从而网络能在显著降低计算量的同时保持识别精度。实验表明, 当信噪比大于-3 dB时, 所提方法对10类复杂调制波形的整体识别率达到99%以上。
中图分类号:
周东平, 阮航, 沙明辉, 王崇宇, 崔念强, 鲁耀兵. 基于特征融合的Fast-CNN的复杂波形调制识别[J]. 系统工程与电子技术, 2025, 47(7): 2165-2175.
Dongping ZHOU, Hang RUAN, Minghui SHA, Chongyu WANG, Nianqiang CUI, Yaobing LU. Complex waveform modulation recognition based on feature fusion with Fast-CNN[J]. Systems Engineering and Electronics, 2025, 47(7): 2165-2175.
表2
仿真参数设置"
雷达波形 | 参数设置 | 取值范围 |
- | 信号脉宽/μs | 2 |
采样率/MHz | 500 | |
起始频率/GHz | 1~3 | |
LFM NLFM | 信号带宽/MHz | 30~200 |
BPSK/LFM | 信号带宽/MHz | 30~200 |
巴克码长度 | {7, 11, 13} | |
MPSK/LFM | 信号带宽/MHz | 30~200 |
相位控制数 | {4, 5, 6} | |
StepFrequency/LFM Costas/LFM | 子脉冲带宽/MHz | 5~30 |
跳频间隔/MHz | 10~30 | |
频率编码个数 | {4, 5, 6, 7} | |
StepFrequency/BPSK Costas/BPSK | 跳频间隔/MHz | 10~30 |
频率编码个数 | {4, 5, 6, 7} | |
巴克码长度 | {7, 11, 13} | |
StepFrequency/MPSK Costas/MPSK | 跳频间隔/MHz | 10~30 |
频率编码个数 | {4, 5, 6, 7} | |
相位控制数 | {4, 5, 6} |
表4
不同剪枝率下FF-Fast-CNN的详细信息"
剪枝率/% | 剪枝后每个卷积层通道个数 | 参数量(×103) | 参数减少率/% | 总体识别率/% |
0(未剪枝) | [32, 32, 64, 64, 64, 64, 128, 128, 128, 128] | 665.9 | 0 | 97.36 |
30 | [25, 24, 46, 53, 48, 51, 116, 103, 78, 38] | 348.9 | 47.60 | 97.47 |
50 | [18, 20, 37, 32, 34, 39, 81, 69, 61, 24,] | 176.5 | 73.49 | 97.24 |
70 | [14, 16, 21, 19, 22, 24, 43, 44, 36, 10] | 63.8 | 90.42 | 96.95 |
80 | [6, 11, 16, 15, 13, 13, 26, 27, 31, 8] | 27.9 | 95.81 | 96.36 |
82 | [6, 8, 16, 14, 13, 12, 25, 24, 24, 7] | 22.4 | 96.64 | 96.10 |
84 | [6, 7, 16, 10, 13, 10, 18, 24, 22, 7] | 17.7 | 97.34 | 95.28 |
86 | [5, 7, 13, 10, 12, 9, 12, 20, 22, 6] | 13.4 | 97.99 | 94.48 |
88 | [5, 5, 11, 10, 10, 8, 8, 18, 21, 3] | 9.8 | 98.53 | 53.05 |
90 | [5, 4, 11, 9, 9, 6, 5, 10, 21, 3] | 6.4 | 99.04 | 39.50 |
1 | 欧健. 多功能雷达行为辨识与预测技术研究[D]. 长沙: 国防科技大学, 2017. |
OU J. Research on behavior recognition and prediction techniques against multi-function radar[D]. Changsha: National University of Defense Technology, 2017. | |
2 | 薛坚. 雷达辐射源信号识别关键技术研究[D]. 南京: 南京大学, 2021. |
XUE J. Research on key technology of radar emitter signal re-cognition[D]. Nanjing: Nanjing University, 2021. | |
3 | RAKHSHANFAR M. Maximum likelihood approach to classification of digitally frequency-modulated signals[C]//Proc. of the 7th International Symposium on Wireless Communication Systems, 2010: 761-764. |
4 | 吴斌,袁亚博,汪勃.基于记忆因子的连续相位调制信号最大似然调制识别[J].电子与信息学报,2016,38(10):2546-2552. |
WUB,YUANY B,WANGB.Maximum likelihood modulation recognition for continuous phase modulation signals using memory factor[J].Journal of Electronics & Information Technology,2016,38(10):2546-2552. | |
5 | LIC,YANGJ A,LIUH.Modulation recognition algorithm based on cyclic spectrum and ELM-LRF[J].Shipboard Electronic Countermeasure,2020,43(1):52-57, 95. |
6 | 刘腾飞,李贺,孙浩原,等.基于自相关积分循环谱的复合调制雷达信号识别方法[J].中国电子科学研究院学报,2023,18(10):889-895, 929. |
LIUT F,LIH,SUNH Y,et al.Intrapulse composite radar signal recognition method based on autocorrelation integral cyclic spectrum[J].Journal of China Academy of Electronics and Information Technology,2023,18(10):889-895, 929. | |
7 |
符颖,王星,周一鹏,等.基于改进半监督朴素贝叶斯的LPI雷达信号识别[J].系统工程与电子技术,2017,39(11):2463-2469.
doi: 10.3969/j.issn.1001-506X.2017.11.11 |
FUY,WANGX,ZHOUY P,et al.Recognition of radar signals based on revised semi-supervised Naive Bayes[J].Systems Engineering and Electronics,2017,39(11):2463-2469.
doi: 10.3969/j.issn.1001-506X.2017.11.11 |
|
8 | 张茜. 基于高阶统计特性的调制信号识别[D]. 成都: 电子科技大学, 2018. |
ZHANG X. Recognition of digital modulation signals based on high-order statistical characteristics[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
9 | ZHANGX L,ZHANGJ Z,LUOT Z,et al.Radar signal intrapulse modulation recognition based on a denoising-guided disentangled network[J].Remote Sensing,2022,14(5):1252. |
10 | HUANGJ,WUB,LIP,et al.Few-shot learning for radar emitter signal recognition based on improved prototypical network[J].Remote Sensing,2022,14(7):1681. |
11 | HUANGJ,WUB,LIP,et al.Few-shot radar emitter signal recognition based on attention-balanced prototypical network[J].Remote Sensing,2022,14(23):6101. |
12 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
13 | KRIZHEASKYA,SUTSKEVERI,HINTONG.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. |
14 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
15 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
16 | WEIS J,QUQ Z,ZENGX F,et al.Self-attention Bi-LSTM networks for radar signal modulation recognition[J].IEEE Trans.on Microwave Theory and Techniques,2021,69(11):5160-5172. |
17 | LEE D, KIM Y, YOON D. Performance analysis of sequence-based deep learning model for LPI radar waveform recognition in fading channel[C]//Proc. of the 13th International Confe-rence on Information and Communication Technology Convergence, 2022: 2111-2113. |
18 |
徐桂光,王旭东,汪飞,等.基于SE-ResNeXt网络的低信噪比LPI雷达辐射源信号识别[J].系统工程与电子技术,2022,44(12):3676-3684.
doi: 10.12305/j.issn.1001-506X.2022.12.11 |
XUG G,WANGX D,WANGF,et al.LPI radar emitter signals recognition in low SNR based on SE-ResNeXt network[J].Systems Engineering and Electronics,2022,44(12):3676-3684.
doi: 10.12305/j.issn.1001-506X.2022.12.11 |
|
19 |
聂千祁,沙明辉,朱应申.基于改进残差神经网络的雷达信号识别方法[J].系统工程与电子技术,2024,46(10):3356-3364.
doi: 10.12305/j.issn.1001-506X.2024.10.13 |
NIEQ Q,SHAM H,ZHUY S.Radar signal recognition method based on improved residual neural network[J].Systems Engineering and Electronics,2024,46(10):3356-3364.
doi: 10.12305/j.issn.1001-506X.2024.10.13 |
|
20 | WANGX D,XUG G,YANH,et al.LPI radar signals mo-dulation recognition based on ACDCA-ResNeXt[J].IEEE Access,2023,11,45168-45180. |
21 | 全大英,陈赟,唐泽雨,等.基于双通道卷积神经网络的雷达信号识别[J].上海交通大学学报,2022,56(7):877-885. |
QUAND Y,CHENY,TANGZ Y,et al.Radar signal recognition based on dual channel convolutional neural network[J].Journal of Shanghai Jiaotong University,2022,56(7):877-885. | |
22 | QUAND Y,TANGZ Y,WANGX,et al.LPI radar signal recognition based on dual-channel CNN and feature fusion[J].Symmetry,2022,14(3):570. |
23 | HUYNHT T,DOANV S,HUAC H,et al.Accurate LPI radar waveform recognition with CWD-TFA for deep convolutional network[J].IEEE Wireless Communications Letters,2021,10(8):1638-1642. |
24 | HU Z C, HU D X, WANG J T, et al. A pulse accumulation method for LPI radar emitter signal recognition[C]//Proc. of the 4th International Conference on Intelligent Control, Mea-surement and Signal Processing, 2022: 875-880. |
25 | JIANGW K,LIY,LIAOM M,et al.An improved LPI radar waveform recognition framework with LDC-Unet and SSR-Loss[J].IEEE Signal Processing Letters,2022,29,149-153. |
26 | HENDERSON A, HARBOUR S, YAKOPCIC C, et al. Spiking Neural networks for LPI radar waveform recognition with neuromorphic computing[C]//Proc. of the IEEE Radar Confe-rence, 2023. |
27 | PARK D H, BANG J H, PARK J H, et al. A fast and accurate convolutional neural network for LPI radar waveform re-cognition[C]//Proc. of the 19th European Radar Conference, 2022: 89-92. |
28 | LIUZ P,WANGL D,FENGY T,et al.A recognition method for time-frequency overlapped waveform-agile radar signals based on matrix transformation and multi-scale center point detection[J].Applied Acoustics,2021,175,107855. |
29 | DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3560-3569. |
30 | LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2755-2763. |
31 | ZHANGJ M,WANGW,LUC Q,et al.Lightweight deep network for traffic sign classification[J].Annals of Telecommunications,2020,75,369-379. |
32 | 程航,徐树公.基于剪枝与知识蒸馏的轻量级人像抠图方法[J].工业控制计算机,2024,37(1):91-93. |
CHENGH,XUS G.Lightweight human matting method based on pruning and knowledge distillation[J].Industrial Control Computer,2024,37(1):91-93. | |
33 | WANGZ,DUL,LIY.Boosting lightweight CNNs through network pruning and knowledge distillation for SAR target re-cognition[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14,8386-8397. |
34 | ZHANGH Y,YUL,CHENY S,et al.Fast complex-valued CNN for radar jamming signal recognition[J].Remote Sensing,2021,13(15):2867. |
35 |
王海英,张群英,成文海,等.LPI雷达信号调制识别及参数估计研究进展[J].系统工程与电子技术,2024,46(6):1908-1924.
doi: 10.12305/j.issn.1001-506X.2024.06.09 |
WANGH Y,ZHANGQ Y,CHENGW H,et al.Research progress on LPI radar signal modulation recognition and para-meter estimation[J].Systems Engineering and Electronics,2024,46(6):1908-1924.
doi: 10.12305/j.issn.1001-506X.2024.06.09 |
|
36 | 廖正龚,任渊,毕井章.一种频率-相位混合编码的MIMO雷达波形设计[J].现代防御技术,2023,51(6):112-122. |
LIAOZ G,RENY,BIJ Z.A frequency-phase hybrid coded waveform design for MIMO radar[J].Modern Defence Technology,2023,51(6):112-122. | |
37 | 付银娟,刘星宇,曾耀平.脉间频率编码脉内复合调频雷达信号设计与分析[J].信号处理,2022,38(10):2053-2063. |
FUY J,LIUX Y,ZENGY P.Design and analysis of interpulse frequency coded and intrapulse composite frequency modulation radar signal[J].Journal of Signal Processing,2022,38(10):2053-2063. | |
38 | 胡丹. 低截获概率雷达辐射源信号降噪与检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
HU D. Research on denoising and detection technology of low probability radar radiation source signal[D]. Harbin: Harbin Institute of Technology, 2017. | |
39 | RICHARDS,MARKA.Fundamentals of radar signal processing[M].2nd edNew York:Mcgraw-hill,2005. |
40 | SHEN L, QUAN D Y, WANG X F, et al. Radar waveform recognition based on time-frequency images under deteriorating channel conditions[C]//Proc. of the IEEE 8th International Conference on Computer and Communications, 2022: 188-192. |
41 | 李欣然,李春国,明钰婷,等.脉冲噪声环境下的调制识别算法[J].信号处理,2024,40(8):1497-1507. |
LIX R,LIC G,MINGY T,et al.Modulation recognition algorithm in impulsive noise environments[J].Journal of Signal Processing,2024,40(8):1497-1507. |
[1] | 连家威, 张晓林, 颜品, 孙溶辰. 基于小波能量比和改进阈值函数的通信信号降噪算法[J]. 系统工程与电子技术, 2025, 47(7): 2098-2109. |
[2] | 姜杰, 凌青, 闫文君, 刘凯. 基于MFFDet-R的多源舰船图像融合检测方法[J]. 系统工程与电子技术, 2025, 47(2): 390-397. |
[3] | 韩子硕, 范喜全, 付强, 马传焱, 张冬冬. 面向无人机视角的多源信息融合目标检测[J]. 系统工程与电子技术, 2025, 47(1): 52-61. |
[4] | 王海英, 张群英, 成文海, 董家铭, 刘小军. LPI雷达信号调制识别及参数估计研究进展[J]. 系统工程与电子技术, 2024, 46(6): 1908-1924. |
[5] | 刘绍华, 杜康, 佘春东, 杨傲. 基于CenterNet的多教师联合知识蒸馏[J]. 系统工程与电子技术, 2024, 46(4): 1174-1184. |
[6] | 邹涵, 张天骐, 马焜然, 杨宗方. 基于多特征融合的MIMO-OFDM系统单-混信号调制识别算法[J]. 系统工程与电子技术, 2024, 46(4): 1456-1465. |
[7] | 于蕾, 邓秋月, 郑丽颖, 吴昊宇. 二阶逐层特征融合网络的图像超分辨重建[J]. 系统工程与电子技术, 2024, 46(2): 391-400. |
[8] | 薛峰涛, 孙天宇, 杨益民, 杨健. 基于全局特征融合的SAR图像旋转舰船目标检测算法[J]. 系统工程与电子技术, 2024, 46(12): 4044-4053. |
[9] | 平嘉蓉, 李赛, 林云航. Alpha稳定分布噪声和多径干扰下的无人机集群MIMO信号调制识别[J]. 系统工程与电子技术, 2024, 46(11): 3920-3929. |
[10] | 邓志安, 王治国, 王盛鳌, 司伟建. 同步提取变换去噪的雷达信号调制识别方法[J]. 系统工程与电子技术, 2024, 46(10): 3334-3346. |
[11] | 罗佳奕, 李煊鹏, 李江浩, 薛启凡, 杨凤, 张为公. 基于PDW多特征融合的辐射源信号分选方法[J]. 系统工程与电子技术, 2024, 46(1): 80-87. |
[12] | 李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45(8): 2415-2422. |
[13] | 陈洋, 廖灿辉, 张锟, 刘建, 王鹏举. 基于自监督对比学习的信号调制识别算法[J]. 系统工程与电子技术, 2023, 45(4): 1200-1206. |
[14] | 汪锐, 张天骐, 安泽亮, 王雪怡, 方竹. 基于联合特征参数和一维CNN的MIMO-OFDM系统调制识别算法[J]. 系统工程与电子技术, 2023, 45(3): 902-912. |
[15] | 龚佩, 李天昀, 章昕亮, 寸陈韬. 利用联合特征参数的卫星单-混信号调制识别[J]. 系统工程与电子技术, 2023, 45(2): 589-596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||