系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (6): 1908-1924.doi: 10.12305/j.issn.1001-506X.2024.06.09
• 传感器与信号处理 • 上一篇
王海英1,2,3, 张群英1,2,*, 成文海1,2,3, 董家铭1,2,3, 刘小军1,2
收稿日期:
2022-12-19
出版日期:
2024-05-25
发布日期:
2024-06-04
通讯作者:
张群英
作者简介:
王海英 (1999—), 女, 博士研究生, 主要研究方向为雷达目标识别与对抗、雷达信号参数估计等Haiying WANG1,2,3, Qunying ZHANG1,2,*, Wenhai CHENG1,2,3, Jiaming DONG1,2,3, Xiaojun LIU1,2
Received:
2022-12-19
Online:
2024-05-25
Published:
2024-06-04
Contact:
Qunying ZHANG
摘要:
低截获概率(low probability of intercept, LPI)雷达已成为新时代雷达装备中关键的技术体制或工作模式,针对LPI雷达信号调制识别及参数估计方法的研究是当前雷达对抗侦察领域的热点。首先, 分析了几种典型LPI雷达信号的脉内特征,梳理了LPI雷达信号调制识别及参数估计的传统和主流方法,并说明其原理、优缺点和研究现状。最后,总结了现有LPI雷达信号调制识别及参数估计方法尚存的问题,并指出其未来发展趋势,旨在为今后的研究提供参考。
中图分类号:
王海英, 张群英, 成文海, 董家铭, 刘小军. LPI雷达信号调制识别及参数估计研究进展[J]. 系统工程与电子技术, 2024, 46(6): 1908-1924.
Haiying WANG, Qunying ZHANG, Wenhai CHENG, Jiaming DONG, Xiaojun LIU. Research progress on LPI radar signal modulation recognition and parameter estimation[J]. Systems Engineering and Electronics, 2024, 46(6): 1908-1924.
表1
现有基于深度学习的识别方法的性能对比分析"
文献 | 年份 | 神经网络输入 | 神经网络类型 | 可识别信号种类数量 | SNR/dB | 总体识别率/% |
文献[ | 2018 | CWD时频图 | 卷积神经网络(convolutional neural networks, CNN) | 12 | -6 | 93.58 |
文献[ | 2019 | CWD时频图 | 单步多框检测器 | 12 | -4 | 95.00 |
文献[ | 2020 | CWD时频图 | CNN+迁移学习 | 12 | -6 | 99.00 |
文献[ | 2021 | CWD时频图 | 去噪CNN | 8 | -10 | 90.00 |
文献[ | 2021 | CWD时频图 | CNN | 13 | 0 | 98.60 |
文献[ | 2021 | SPWVD时频图 | 密集积累网络 | 13 | 0 | 98.20 |
文献[ | 2021 | CWD时频图 | 深度残差网络 | 7 | -6 | 96.00 |
文献[ | 2022 | CWD时频图 | CNN+Swin transformer | 6 | -18 | 94.26 |
文献[ | 2022 | WVD时频图+FSST时频图 | 残差网络+混洗网络 | 18 | 10 | 98.08 |
文献[ | 2022 | 低、中、高分辨率的STFT时频图 | 残差网络 | 16 | -6 | 96.00 |
文献[ | 2022 | 离散傅里叶变换谱图 | CNN+双向长短期记忆网络 | 12 | -4 | 94.27 |
文献[ | 2022 | CWD时频图 | 混洗网络 | 12 | -2 | 99.36 |
文献[ | 2022 | 信号的平滑伪WVD(smoothed pseudo WVD, SPWVD)时频图 | CNN+即插即用注意力模块 | 13 | -4 | 99.20 |
文献[ | 2022 | SPWVD时频图 | 特征压缩与激发残差网络 | 8 | -8 | 93.20 |
文献[ | 2022 | SPWVD时频图 | 带抗噪声损失函数的CNN | 12 | -10 | 91.17 |
文献[ | 2023 | CWD时频图 | 非对称扩张卷积坐标注意力残差网络 | 12 | -8 | 97.94 |
文献[ | 2023 | WVD+WT+CWD+自适应特征 | CNN | 6 | -13 | 93.00 |
1 | 符小卫, 陈军. 机载探测与电子对抗原理[M]. 西安: 西北工业大学出版社, 2013. |
FU X W , CHEN J . Principles of airborne detection and electronic countermeasures[M]. Xi'an: Northwestern Polytechnical University Press, 2013. | |
2 | STIMSON G W . Introduction to airborne radar[M]. Mendham: SciTech Publishing, 1998. |
3 | LANGLEY L E. Specific emitter identification (SEI) and classical parameter fusion technology[C]//Proc. of WESCON, 1993: 377-381. |
4 | ZHAO T H , WU Q H , ZHAO F , et al. Radar waveform design and processing using joint amplitude-frequency-phase modulation[J]. IET Radar, Sonar & Navigation, 2023, 17 (3): 522- 536. |
5 |
MAR T T , MON S S Y . Pulse compression method for radar signal processing[J]. International Journal of Science and Engineering Applications, 2014, 3 (2): 31- 35.
doi: 10.7753/IJSEA0302.1005 |
6 |
ALPHONSE S , WILLIAMSON G A . Evaluation of a class of NLFM radar signals[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019 (1): 62.
doi: 10.1186/s13634-019-0658-9 |
7 | HOU J G, TAO R, SHAN T, et al. A novel LPI radar signal based on hyperbolic frequency hopping combined with Barker phase code[C]//Proc. of the 7th International Conference on Signal Processing, 2004: 2070-2073. |
8 | SONG J, LIU Y. The recognition of hybrid modulation signal combined with PRBC and LFM[C]//Proc. of the IEEE 11th International Conference on Signal Processing, 2012: 1720-1723. |
9 |
FIELDING J E . Polytime coding as a means of pulse compression[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (2): 716- 721.
doi: 10.1109/7.766951 |
10 | 赵学志. 集中式MIMO雷达脉内调制类型识别和参数估计算法研究[D]. 西安: 西安电子科技大学, 2018. |
ZHAO X Z. Research on the intra-pulse modulation recognition and parameter estimation algorithms of centralized MIMO radar[D]. Xi'an: Xidian University, 2018. | |
11 | 李昀豪. MIMO雷达信号参数估计算法研究[D]. 成都: 电子科技大学, 2015. |
LI Y H. Study on the parameter estimation algorithms of MIMO radar signals[D]. Chengdu: University of Electronic Science and Technology of China, 2015. | |
12 | 张文强. OFDM雷达信号的识别与参数估计方法研究[D]. 成都: 西南交通大学, 2019. |
ZHANG W Q. Research on recognition and parameter estimation of OFDM radar signal[D]. Chengdu: Southwest Jiaotong University, 2019. | |
13 |
SOLIMAN S S , HSUE S . Signal classification using statistical moments[J]. IEEE Trans. on Communications, 1992, 40 (5): 908- 916.
doi: 10.1109/26.141456 |
14 | KIM K, POLYDOROS A. Digital modulation classification: the BPSK versus QPSK case[C]//Proc. of the 21st Century Military Communications Conference, 1988: 431-436. |
15 | LAY N E, POLYDOROS A. Modulation classification of signals in unknown ISI environments[C]//Proc. of MILCOM, 1995: 170-174. |
16 | CHUGG K M, LONG C S, POLYDOROS A. Combined likelihood power estimation and multiple hypothesis modulation classification[C]//Proc. of the 29th Asilomar Conference on Signals, Systems and Computers, 1995: 1137-1141. |
17 |
WEI W , MENDEL J M . Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Trans. on Communications, 2000, 48 (2): 189- 193.
doi: 10.1109/26.823550 |
18 | RAKHSHANFAR M. Maximum likelihood approach to classification of digitally frequency-modulated signals[C]//Proc. of the 7th International Symposium on Wireless Communication Systems, 2010: 261-264. |
19 | 吴斌, 袁亚博, 汪勃. 基于记忆因子的连续相位调制信号最大似然调制识别[J]. 电子与信息学报, 2016, 38 (10): 2546- 2552. |
WU B , YUAN Y B , WANG B . Maximum likelihood modulation recognition for continuous phase modulation signals using memory factor[J]. Journal of Electronics & Information Technology, 2016, 38 (10): 2546- 2552. | |
20 | GARDNER W A, SPOONER C M. Cyclic spectral analysis for signal detection and modulation recognition[C]//Proc. of the IEEE Military Communications Conference, 1988: 419-424. |
21 | GARDNER W A . Cyclostationarity in communications and signal processing[M]. Piscataway: IEEE Press, 1994. |
22 |
RAMKUMAR B . Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9 (2): 27- 45.
doi: 10.1109/MCAS.2008.931739 |
23 | 李晨, 杨俊安, 刘辉. 基于循环谱和ELM-LRF的调制识别算法[J]. 舰船电子对抗, 2020, 43 (1): 52-57, 95. |
LI C , YANG J A , LIU H . Modulation recognition algorithm based on cyclic spectrum and ELM-LRF[J]. Shipboard Electronic Countermeasure, 2020, 43 (1): 52-57, 95. | |
24 |
ZHANG L , LIU H , YANG X L , et al. Intelligent denoising-aided deep learning modulation recognition with cyclic spectrum features for higher accuracy[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (6): 3749- 3757.
doi: 10.1109/TAES.2021.3083406 |
25 | 杜宇, 杨新权, 张建华, 等. 基于循环谱截面智能分析的混合信号调制识别方法[J]. 系统仿真学报, 2023, 35 (1): 146- 157. |
DU Y , YANG X Q , ZHANG J H , et al. Modulation recognition method of mixed signal based on intelligent analysis of cyclic spectrum section[J]. Journal of System Simulation, 2023, 35 (1): 146- 157. | |
26 | HAZZA A, SHOAIB M, ALSHEBEILI S A, et al. An overview of feature-based methods for digital modulation classification[C]//Proc. of the International Conference on Communications, Signal Processing, and their Applications, 2013. |
27 |
LIEDTKE F F . Computer-simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters[J]. Signal Processing, 1984, 6 (4): 311- 323.
doi: 10.1016/0165-1684(84)90063-X |
28 | ZENG D G , XIONG H , LONG K Y , et al. Recognition of intra-pulse modulation signal types based on phase difference[J]. Journal of Electronic Measurement and Instrument, 2009, 23 (10): 85- 90. |
29 | ZENG D G, XIONG H, LONG K Y, et al. A fast recognition algorithm for three kinds of intra-pulse modulation signals[C]//Proc. of the IET International Radar Conference, 2009. |
30 | WANG X J, XIONG Y, TANG B, et al. An approach to the modulation recognition of MIMO radar signals[C]//Proc. of the International Conference on Communications, Signal Processing, and Systems, 2013. |
31 | WANG G T, JIANG Q X, SUN B. Radar signal modulation recognition based on improved instantaneous autocorrelation[C]//Proc. of the IEEE 6th International Conference on Signal and Image Processing, 2021: 698-702. |
32 |
王国涛, 姜秋喜, 刘方正, 等. 基于频谱和瞬时自相关的雷达信号调制识别[J]. 兵器装备工程学报, 2022, 43 (1): 200- 205.
doi: 10.11809/bqzbgcxb2022.01.031 |
WANG G T , JIANG Q X , LIU F Z , et al. Radar signal modulation recognition based on spectrum and instantaneous autocorrelation[J]. Journal of Ordnance Equipment Engineering, 2022, 43 (1): 200- 205.
doi: 10.11809/bqzbgcxb2022.01.031 |
|
33 | JIN M, SHENG X L, HU G B. Intrapulse modulation recognition of radar signals based on statistical tests of the time-frequency curve[C]//Proc. of the International Conference on Electronics and Optoelectronics, 2011: 300-304. |
34 |
THIRUMALA K , UMARIKAR A C , JAIN T . Estimation of single-phase and three-phase power-quality indices using empirical wavelet transform[J]. IEEE Trans. on Power Delivery, 2015, 30 (1): 445- 454.
doi: 10.1109/TPWRD.2014.2355296 |
35 |
LUNDEN J , KOIVUNEN V . Automatic radar waveform re-cognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (1): 124- 136.
doi: 10.1109/JSTSP.2007.897055 |
36 |
KISHORE T R , RAO K D . Automatic intra-pulse modulation classification of advanced LPI radar waveforms[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (2): 901- 914.
doi: 10.1109/TAES.2017.2667142 |
37 |
NI X , WANG H L , MENG F , et al. LPI radar waveform re-cognition based on multi-resolution deep feature fusion[J]. IEEE Access, 2021, 9, 26138- 26146.
doi: 10.1109/ACCESS.2021.3058305 |
38 | HIPP J E. Modulation classification based on statistical moments[C]//Proc. of the IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's, 1986. |
39 |
SWAMI A , SADLER B M . Hierarchical digital modulation classification using cumulants[J]. IEEE Trans. on Communications, 2000, 48 (3): 416- 429.
doi: 10.1109/26.837045 |
40 |
符颖, 王星, 周一鹏, 等. 基于改进半监督朴素贝叶斯的LPI雷达信号识别[J]. 系统工程与电子技术, 2017, 39 (11): 2463- 2469.
doi: 10.3969/j.issn.1001-506X.2017.11.11 |
FU Y , WANG X , ZHOU Y P , et al. Recognition of radar signals based on revised semi-supervised naive Bayes[J]. Systems Engineering and Electronics, 2017, 39 (11): 2463- 2469.
doi: 10.3969/j.issn.1001-506X.2017.11.11 |
|
41 | 孟祥豪, 赵海旭, 梁言. 一种基于对角积分双谱的复合调制LPI雷达信号识别方法[J]. 航天电子对抗, 2021, 37 (5): 13-18, 24. |
MENG X H , ZHAO H X , LIANG Y . A compound modulated LPI radar signal recognition method based on diagonal integral bispectrum[J]. Aerospace Electronic Warfare, 2021, 37 (5): 13-18, 24. | |
42 |
KONG S H , KIM M , HOANG L M , et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942 |
43 | HOANG L M, KIM M J, KONG S H. Deep learning approach to LPI radar recognition[C]//Proc. of the IEEE Radar Conference, 2019. |
44 | LAY B, CHARLISH A. Classifying LPI signals with transfer learning on CNN architectures[C]//Proc. of the Sensor Signal Processing for Defence Conference, 2020. |
45 | 肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307. |
XIAO Y H , WANG L , GUO Y X . Radar signl modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43 (8): 2300- 2307. | |
46 |
THIEN H T , DOAN V S , HUA C H , et al. Accurate LPI radar waveform recognition with CWD-TFA for deep convolutional network[J]. IEEE Wireless Communications Letters, 2021, 10 (8): 1638- 1642.
doi: 10.1109/LWC.2021.3075880 |
47 | THIEN H T, PHAM Q V, NGUYEN T V, et al. Densely-accumulated convolutional network for accurate LPI radar waveform recognition[C]//Proc. of the IEEE Global Communications Conference, 2021. |
48 | JIN X L, MA J, YE F. Radar signal recognition based on deep residual network with attention mechanism[C]//Proc. of the IEEE 4th International Conference on Electronic Information and Communication Technology, 2021: 428-432. |
49 | 苏琮智, 杨承志, 邴雨晨, 等. 基于CNN-Swin Transformer Network的LPI雷达信号识别[EB/OL]. http://kns.cnki.net/kcms/detail/32.1353.TN.20220617.1720.002.html. |
50 | GUVEN I, YAGMUR C, KARADAS B, et al. Classifying LPI radar waveforms with time-frequency transformations using multi-stage CNN system[C]//Proc. of the 23rd International Radar Symposium, 2022: 501-506. |
51 | HU Z D, HU D X, WANG J T, et al. A pulse accumulation method for LPI radar emitter signal recognition[C]//Proc. of the 4th International Conference on Intelligent Control, Measurement and Signal Processing, 2022: 875-880. |
52 | LEE D, KIM Y, YOON D. Performance analysis of sequence-based deep learning model for LPI radar waveform recognition in fading channel[C]//Proc. of the 13th International Conference on Information and Communication Technology Convergence, 2022: 2111-2113. |
53 | PARK D H, BANG J H, PARK J H, et al. A fast and accurate convolutional neural network for LPI radar waveform recognition[C]//Proc. of the 19th European Radar Conference, 2022: 89-92. |
54 | TANG Q, HUANG H H, CHEN Z. A novel approach for automatic recognition of LPI radar waveforms based on CNN and attention mechanisms[C]//Proc. of the 41st Chinese Control Conference, 2022: 6648-6653. |
55 | XU K L, ZHANG Y. An attention neural network for radar intra-pulse modulation pattern recognition[C]//Proc. of the 3rd International Conference on Computer Information and Big Data Applications, 2022. |
56 | JIANG W K , LI Y , LIAO M M , et al. An improved LPI radar waveform recognition framework with LDC-Unet and SSR-loss[J]. IEEE Signal Processing Letters, 2021, 29, 149- 153. |
57 |
WANG X D , XU G G , YAN H , et al. LPI radar signals mo-dulation recognition based on ACDCA-ResNeXt[J]. IEEE Access, 2023, 11, 45168- 45180.
doi: 10.1109/ACCESS.2023.3270231 |
58 |
HUANG H , LI Y , LIU J Y , et al. LPI waveform recognition using adaptive feature construction and convolutional neural networks[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38 (4): 14- 26.
doi: 10.1109/MAES.2023.3238704 |
59 |
PAN Z S , WANG S F , LI Y J . Residual attention-aided U-Net GAN and multi-instance multi-label classifier for automatic waveform recognition of overlapping LPI radar signals[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (5): 4377- 4395.
doi: 10.1109/TAES.2022.3160978 |
60 | CHEN K Y , WANG L P , ZHANG J Y , et al. Semantic learning for analysis of overlapping LPI radar signals[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 8501615. |
61 | ABATZOGLOU T J . Fast maximum likelihood joint estimation of frequency and frequency rate[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, AES-22 (6): 708- 715. |
62 | ZHANG L P, PENG Y N, WANG X Q, et al. An iterative approach of parameter estimation for LFM signals[C]//Proc. of the IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002: 1054-1057. |
63 | YU X H, LI X B, SHI Y R, et al. Maximum likelihood optimization of linear frequency modulated signal based on particle swarm[C]//Proc. of the IEEE 15th International Conference on Signal Processing, 2020: 78-82. |
64 | VOLCKER B , OTTERSTEN B . Chirp parameter estimation from a sample covariance matrix[J]. IEEE Trans. on Signal Processing, 2001, 49 (3): 603- 612. |
65 | YUAN W M, WU S J. Blind parameter estimation of low probability of intercept waveforms[C]//Proc. of the 7th International Conference on Signal Processing, 2004: 2147-2150. |
66 | JING F L , ZHANG C J , SI W J , et al. QFM signals parameters estimation based on double scale two dimensional frequency distribution[J]. IEEE Access, 2019, 7, 4496- 4505. |
67 | XIA X G . Discrete Chirp-Fourier transform and its application to Chirp rate estimation[J]. IEEE Trans. on Signal Processing, 2000, 48 (11): 3122- 3133. |
68 | LI J X, LI P P, PU J X. Doppler frequency parameters estimation for SAR imaging using a modified discrete Chirp-Fourier transform[C]//Proc. of the IEEE International Conference Mechatronics and Automation, 2005: 649-652. |
69 | LIME A F. Analysis of low probability of intercept (LPI) radar signals using cyclostationary processing[D]. Monterey: Naval Postgraduate School, 2002. |
70 | 张鑫, 刘锋, 刘勇. Frank码截获信号循环谱特征参数提取方法[J]. 中国电子科学研究院学报, 2011, 6 (4): 401- 405. |
ZHANG X , LIU F , LIU Y . Method for extracting cyclic spectral features of Frank coded intercept signal[J]. Journal of Journal of China Academy of Electronics and Information Technology, 2011, 6 (4): 401- 405. | |
71 | 刘孟孟, 张立民, 钟兆根. 基于二阶矩的直扩信号伪码周期估计算法[J]. 科学技术与工程, 2013, 13 (5): 1307- 1310. |
LIU M M , ZHANG L M , ZHONG Z G . Estimation of period of pseudo-noise sequence for direct sequence spread spectrum signals using second order moment[J]. Science Technology and Engineering, 2013, 13 (5): 1307- 1310. | |
72 | CHILUKURI R , KAKARLA H , SUBBARAO K . Estimation of modulation parameters of LPI radar using cyclostationary method[J]. Sensing and Imaging, 2020, 21 (1): 1- 20. |
73 | KWOK H K , JONES D L . Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Trans. on Signal Processing, 2000, 48 (10): 2964- 2972. |
74 | XU F F, BAO Q L, CHEN Z P, et al. Parameter estimation of multi-component LFM signals based on STFT+Hough transform and fractional Fourier transform[C]//Proc. of the IEEE 2nd Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2018: 839-842. |
75 | QIU Z Y, ZHU J, LI F. Multiple BPSK/LFM hybrid modulated signals parameter estimation and analysis intercepted by non-cooperative radar receiver[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. |
76 | GROSSMANN A , MORLET J . Decomposition of functions into wavelets of constant shape, and related transforms[M]. Singapore: World Scientific Press, 1985. |
77 | MALLAT S . A wavelet tour of signal processing, 3rd ed.: The Sparse Way[M]. Amsterdam: Academic Press, 2008. |
78 | HO K C , PROKOPIW W , CHAN Y T . Modulation identification of digital signals by the wavelet transform[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147 (4): 169- 176. |
79 | QIU Z Y, ZHU J, WANG P, et al. Parameter estimation of phase code and linear frequency modulation combined signal based on fractional autocorrelation and Haar wavelet transform[C]//Proc. of the IEEE 17th International Conference on Computational Science and Engineering, 2014: 936-939. |
80 | VILLE J . Theory and applications of the notion of the analytic signal[J]. Cables and Transmission, 1948, 2 (1): 61- 74. |
81 | WOOD J C , BARRY D T . Linear signal synthesis using the Radon-Wigner transform[J]. IEEE Trans. on Signal Processing, 1994, 42 (8): 2105- 2111. |
82 | BARBAROSSA S . Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Trans. on Signal Processing, 1995, 43 (6): 1511- 1515. |
83 | CIRILLO L , ZOUBIR A , AMIN M . Parameter estimation for locally linear FM signals using a time-frequency Hough transform[J]. IEEE Trans. on Signal Processing, 2008, 56 (9): 4162- 4175. |
84 | AUGER F , FLANDRIN P . Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Trans. on Signal Processing, 1995, 43 (5): 1068- 1089. |
85 | WANG T , JIANG K L , LIAO J Y , et al. Research on LPI radar signal detection and parameter estimation technology[J]. Journal of Systems Engineering and Electronics, 2021, 32 (3): 566- 572. |
86 | COHEN L . Generalized phase-space distribution functions[J]. Journal of Mathematical Physics, 1966, 7 (5): 781- 786. |
87 | 王晓峰, 张国毅, 芮国胜. 低信噪比下多相码信号检测与参数估计方法[J]. 西安电子科技大学学报, 2015, 42 (1): 174- 179. |
WANG X F , ZHANG G Y , RUI G S . Detection and parameter of the polyphase code signal in a low SNR[J]. Journal of Xidian University, 2015, 42 (1): 174- 179. | |
88 | GUNER K K , GULUM T O , ERKMEN B . FPGA-based Wigner-Hough transform system for detection and parameter extraction of LPI radar LFMCW signals[J]. IEEE Trans. on Instrumentation and Measurement, 2021, 70, 1- 15. |
89 | VICTOR N . The fractional order Fourier transform and its application to quantum mechanics[J]. Geoderma, 1980, 25 (3): 241- 265. |
90 | 陈艳丽, 郭良浩, 宫在晓. 简明分数阶傅里叶变换及其对线性调频信号的检测和参数估计[J]. 声学学报, 2015, 40 (6): 761- 771. |
CHEN Y L , GUO L H , GONG Z X . The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal[J]. Acta Acustica, 2015, 40 (6): 761- 771. | |
91 | 刘利民, 李豪欣, 李琦, 等. 基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法[J]. 电子与信息学报, 2021, 43 (10): 2798- 2804. |
LIU L M , LI H X , LI Q , et al. A fast signal parameter estimation algorithm for linear frequency modulation signal under low signal-to-noise ratio based on fractional Fourier transform[J]. Journal of Electronics & Information Technology, 2021, 43 (10): 2798- 2804. | |
92 | PELEG S , FRIEDLANDER B . The discrete polynomial-phase transform[J]. IEEE Trans. on Signal Processing, 1995, 43 (8): 1901- 1914. |
93 | TANG P F, YUAN B, LIN Q Q, et al. An efficient algorithm for estimating the parameters of multicomponent cubic phase signals[C]//Proc. of the 2nd International Conference on Computer Science and Electronics Engineering, 2013. |
94 | BARBAROSSA S , SCAGLIONE A , GIANNAKIS G B . Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Trans. on Signal Processing, 1998, 46 (3): 691- 708. |
95 | 吴贞宇, 夏厚培. 基于HAF的混叠多分量LFM信号时域参数测量[J]. 电子科技, 2021, 34 (4): 6- 11. |
WU Z Y , XIA H P . Time domain parameter measurement of aliased multi-component LFM signals based on HAF[J]. Electronic Science & Technology, 2021, 34 (4): 6- 11. | |
96 | SU H N , PAN J M , BAO Q L , et al. Parameter estimation of li-near frequency modulated signals based on a Wigner-Ville distribution complex-valued convolutional neural network[J]. Journal of Applied Remote Sensing, 2020, 14 (3): 36512- 36534. |
97 | 张佳炜. 基于卷积神经网络的数字信号调制方式识别及参数估计[D]. 哈尔滨: 哈尔滨理工大学, 2021. |
ZHANG J W. Modulation recognition and parameter estimation of digital signal based on convolutional neural network[D]. Harbin: Harbin University of Science & Technology, 2021. |
[1] | 谢前朋, 杜奕航, 孙兵, 闫华, 潘小义, 赵锋. 基于降维变换的低复杂度双基地EMVS-MIMO雷达高分辨多维参数估计[J]. 系统工程与电子技术, 2024, 46(6): 1899-1907. |
[2] | 邹涵, 张天骐, 马焜然, 杨宗方. 基于多特征融合的MIMO-OFDM系统单-混信号调制识别算法[J]. 系统工程与电子技术, 2024, 46(4): 1456-1465. |
[3] | 陈汪翔, 田鹤, 王吉儿, 田单. 基于散射模型的球头锥目标几何结构参数估计[J]. 系统工程与电子技术, 2024, 46(3): 892-897. |
[4] | 王栗沅, 何华锋, 韩晓斐, 何耀民, 李震. 宽带相干信号DOA和极化参数联合估计方法[J]. 系统工程与电子技术, 2024, 46(3): 805-813. |
[5] | 董云龙, 张焱. 基于渐消因子的ECEF-GLS估计算法[J]. 系统工程与电子技术, 2024, 46(1): 137-142. |
[6] | 来燃, 孙刚, 张威, 章涛. 非凸松弛原子范数空时动目标参数估计算法[J]. 系统工程与电子技术, 2023, 45(9): 2761-2767. |
[7] | 郑雨晴, 艾小锋, 徐志明, 赵锋, 杨勇. 基于穿越时刻的前向散射雷达网目标参数估计[J]. 系统工程与电子技术, 2023, 45(5): 1323-1332. |
[8] | 杨宇超, 方明, 赵晨帆, 方刚. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45(5): 1359-1370. |
[9] | 陈洋, 廖灿辉, 张锟, 刘建, 王鹏举. 基于自监督对比学习的信号调制识别算法[J]. 系统工程与电子技术, 2023, 45(4): 1200-1206. |
[10] | 汪锐, 张天骐, 安泽亮, 王雪怡, 方竹. 基于联合特征参数和一维CNN的MIMO-OFDM系统调制识别算法[J]. 系统工程与电子技术, 2023, 45(3): 902-912. |
[11] | 刘智星, 全英汇, 沙明辉, 方文, 高霞, 邢孟道. 载频-重频联合捷变雷达目标参数估计方法[J]. 系统工程与电子技术, 2023, 45(2): 401-406. |
[12] | 龚佩, 李天昀, 章昕亮, 寸陈韬. 利用联合特征参数的卫星单-混信号调制识别[J]. 系统工程与电子技术, 2023, 45(2): 589-596. |
[13] | 翟茹萍, 张书衡, 平嘉蓉. 复杂多径环境下的无人机集群通信波形识别[J]. 系统工程与电子技术, 2023, 45(10): 3312-3320. |
[14] | 张帆, 田润操, 王鹏, 董磊. 考虑广义耦合的多应力加速寿命评估方法[J]. 系统工程与电子技术, 2023, 45(10): 3350-3361. |
[15] | 刘康, 何明浩, 韩俊, 冯明月, 都兴霖. 基于多传感器的雷达对抗侦察数据融合算法[J]. 系统工程与电子技术, 2023, 45(1): 101-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||