系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3312-3320.doi: 10.12305/j.issn.1001-506X.2023.10.36

• 通信与网络 • 上一篇    

复杂多径环境下的无人机集群通信波形识别

翟茹萍, 张书衡, 平嘉蓉   

  1. 南京航空航天大学电子信息工程学院, 江苏 南京 210016
  • 收稿日期:2022-08-10 出版日期:2023-09-25 发布日期:2023-10-11
  • 通讯作者: 翟茹萍
  • 作者简介:翟茹萍 (1997—), 女, 硕士研究生, 主要研究方向为无人机信道建模、调制识别
    张书衡 (1998—), 男, 硕士研究生, 主要研究方向为调制识别、雷达目标识别
    平嘉蓉 (1999—), 女, 硕士研究生, 主要研究方向为毫米波信道测量
  • 基金资助:
    国家自然科学基金(62031017);国家自然科学基金(61971221)

Waveform recognition of unmanned aerial vehicle swarm communication in complex multipath environment

Ruping ZHAI, Shuheng ZHANG, Jiarong PING   

  1. School of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2022-08-10 Online:2023-09-25 Published:2023-10-11
  • Contact: Ruping ZHAI

摘要:

无人机(unmanned aerial vehicle, UAV)集群通信电磁环境复杂, 存在用户干扰、多径衰落与频移等现象, 传统加性高斯白噪声信道下的波形识别算法在此场景下性能大幅降低。针对此问题, 提出了一种复杂多径环境下的UAV集群通信波形识别算法。首先, 建立Alpha脉冲干扰下的UAV集群通信多径衰落信道模型; 然后, 针对集群用户间存在Alpha脉冲干扰的问题, 提取信号广义循环均值和广义循环谱特征, 建立复杂多径环境下的UAV集群通信波形特征矩阵; 最后, 建立稀疏自编码器深度神经网络UAV集群通信波形识别模型。仿真结果表明: 提出的算法在Alpha脉冲干扰、多径衰落与频移存在的复杂环境下具有较强的鲁棒性, 实现了7种UAV集群通信波形的识别, 且在信噪比为-10 dB时仍能保证80%以上的识别准确率。

关键词: 无人机集群, 调制识别, Alpha脉冲干扰, 稀疏自编码

Abstract:

The electromagnetic environment of unmanned aerial vehicle (UAV) swarm communication is complex, and phenomena such as user interference, multipath fading and frequency shift frequently occur. The performance of the waveform recognition algorithm under the traditional additive white Gaussion noise channel is greatly reduced in this scenario. To solve this problem above, a waveform recognition algorithm for UAV swarm communication in complex multipath environment is proposed. Firstly, a multipath fading channel model for UAV swarm communication under Alpha pulse interference is established. Secondly, aiming at the problem of Alpha pulse interference among swarm users, the generalized cyclic mean and generalized cyclic spectrum features of the signals are extracted, and the waveform feature matrix of UAV swarm communication in complex multipath environment is established. Finally, the sparse autoencoder deep neural network UAV swarm communication waveform recognition model is established. The simulation results show that the proposed algorithm has strong robustness in the complex environment of Alpha pulse interference, multipath fading and frequency shift, and realizes the recognition of seven kinds of UAV swarm communication waveforms. At the same time, the recognition accuracy of more than 80% can be guaranteed when the signal to noise ratio is -10 dB.

Key words: unmanned aerial vehicle (UAV) swarm, modulation recognition, Alpha pulse interference, sparse autoencoder

中图分类号: