1 |
邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1 (1): 1- 10.
|
|
DENG Y K , ZHAO F J , WANG Y . Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1 (1): 1- 10.
|
2 |
邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33.
|
|
DENG Y K , YU W D , ZHANG H , et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9 (1): 1- 33.
|
3 |
GIOVANNI M P , MARCO M , STEFANO T , et al. Very high resolution automotive SAR imaging from burst data[J]. Remote Sensing, 2023, 15 (3): 845- 864.
doi: 10.3390/rs15030845
|
4 |
李震宇. 机动平台SAR大斜视成像算法研究[D]. 西安: 西安电子科技大学, 2017.
|
|
LI Z Y. Study on high squint imaging algorithms for SAR mounted on maneuvering platforms[D]. Xi'an: Xidian University, 2017.
|
5 |
YAN G X , CHEN Z H , WANG Y , et al. LssDet: a lightweight deep learning detector for SAR ship detection in high-resolution SAR images[J]. Remote Sensing, 2022, 14 (20): 5148- 5166.
doi: 10.3390/rs14205148
|
6 |
ZHAO K , LU R T , WANG S Y , et al. ST-YOLOA: a Swin-Transformer-based YOLO model with an attention mechanism for SAR ship detection under complex background[J]. Frontiers in Neurorobotics, 2023, 17, 1170163- 1170177.
doi: 10.3389/fnbot.2023.1170163
|
7 |
李焘. 基于SAR图像的舰船目标检测方法研究[D]. 西安: 西安电子科技大学, 2019.
|
|
LI T. Study on ship detection methods for SAR images[D]. Xi'an: Xidian University, 2019.
|
8 |
LIU T , YANG Z Y , YANG J , et al. CFAR ship detection methods using compact polarimetric SAR in a K-Wishart distri- bution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (10): 3737- 3745.
doi: 10.1109/JSTARS.2019.2923009
|
9 |
LI J W , CHEN J , CHENG P , et al. A survey on deep-learning-based real-time SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3218- 3247.
doi: 10.1109/JSTARS.2023.3244616
|
10 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
11 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
|
12 |
CHANG Y L , ANAGAW A , CHANG L , et al. Ship detection based on YOLOv2 for SAR imagery[J]. Remote Sensing, 2019, 11 (7): 786- 799.
doi: 10.3390/rs11070786
|
13 |
LI Y D , ZHANG S S , WANG W Q . A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 4006105.
|
14 |
MAO Y X, LI X J, LI Z L, et al. An anchor-free SAR ship detector with only 1.17 m parameters[C]//Proc. of the International Conference on Aviation Safety and Information Technology, 2020: 182-186.
|
15 |
SUN Z Z , DAI M C , LENG X G , et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7799- 7816.
doi: 10.1109/JSTARS.2021.3099483
|
16 |
YU J M , ZHOU G Y , ZHOU S B , et al. A fast and lightweight detection network for multi-scale SAR ship detection under complex back-grounds[J]. Remote Sensing, 2022, 14 (1): 31- 54.
|
17 |
徐从安, 苏航, 李健伟, 等. RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599.
|
|
XU C A , SU H , LI J W , et al. RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599.
|
18 |
ZHOU Y , JIANG X , XU G Z , et al. PVT-SAR: an arbitrarily oriented SAR ship detector with pyramid vision transformer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16, 291- 305.
|
19 |
ZHOU K X , ZHANG M , ZHAO H H , et al. Arbitrary-oriented ellipse detector for ship detection in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 7151- 7162.
doi: 10.1109/JSTARS.2023.3267240
|
20 |
GE J Y , TANG Y P , GUO K T , et al. KeyShip: towards high-precision oriented SAR ship detection using key points[J]. Remote Sensing, 2023, 15 (8): 2035- 2060.
doi: 10.3390/rs15082035
|
21 |
ZHANG Y P , LU D D , QIU X L , et al. Scattering-point-guided RPN for oriented ship detection in SAR images[J]. Remote Sensing, 2023, 15 (5): 1411- 1432.
doi: 10.3390/rs15051411
|
22 |
HAN J M , DING J , LI J , et al. Align deep features for oriented object detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5602511.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
24 |
LIU Z, LIN Y T, CAO Y, et al. Swin-Transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
|
25 |
DOSOVITSKIY A, BEYER L, KOLESNI-KOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-06-05]. http://arxiv.org/abs2010.11929.
|
26 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
27 |
YANG S, PEI Z Q, ZHOU F, et al. Rotated faster R-CNN for oriented object detection in aerial images[C]//Proc. of the 3rd International Conference on Robot Systems and Applications, 2020: 35-39.
|
28 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
29 |
XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3520-3529.
|
30 |
YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[EB/OL]. [2023-05-10]. https://arxiv.org/pdf/1908.05612v4.pdf.
|