系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1204-1211.doi: 10.12305/j.issn.1001-506X.2024.04.08

• 传感器与信号处理 • 上一篇    下一篇

基于锚框自适应和多尺度增强的SAR舰船检测

邵子康1, 张晓玲1,*, 张天文1, 曾天娇2   

  1. 1. 电子科技大学信息与通信工程学院, 四川 成都 611731
    2. 电子科技大学航空航天学院, 四川 成都 611731
  • 收稿日期:2022-12-20 出版日期:2024-03-25 发布日期:2024-03-25
  • 通讯作者: 张晓玲
  • 作者简介:邵子康 (1999—), 男, 硕士研究生, 主要研究方向为深度学习、合成孔径雷达
    张晓玲 (1964—), 女, 教授, 博士, 主要研究方向为深度学习、合成孔径雷达、雷达探测技术、三维SAR的目标散射特性反演
    张天文 (1994—), 男, 博士, 主要研究方向为深度学习、合成孔径雷达、遥感图像处理
    曾天娇 (1993—), 女, 博士, 主要研究方向为深度学习、合成孔径雷达成像
  • 基金资助:
    国家自然科学基金(61571099)

SAR ship detection based on adaptive anchor and multi-scale enhancement

Zikang SHAO1, Xiaoling ZHANG1,*, Tianwen ZHANG1, Tianjiao ZENG2   

  1. 1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
    2. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2022-12-20 Online:2024-03-25 Published:2024-03-25
  • Contact: Xiaoling ZHANG

摘要:

针对目前基于深度学习的合成孔径雷达(synthetic aperture radar, SAR)舰船检测锚框尺度固定、多尺度检测性能较差的问题, 提出了一种基于锚框自适应和多尺度增强网络(adaptive anchor multi-scale enhancement network, AA-MSE-Net)的SAR舰船检测方法。首先, AA-MSE-Net引入了锚框自适应机制, 来生成适应目标形态的高质量锚框, 增强了舰船形态描述能力。其次, AA-MSE-Net提出了多尺度增强金字塔网络, 来融合增强多尺度特征, 增强了多尺度描述能力。最后, AA-MSE-Net在骨干网络中引入了可变形卷积, 来提取舰船形变特征, 进一步提高检测精度。实验证明, AA-MSE-Net在公开SAR舰船检测数据集上的平均精度高于8种对比方法。

关键词: 合成孔径雷达, 舰船检测, 自适应锚框, 尺度增强

Abstract:

Aiming at the problem that the scales of synthetic aperture radar (SAR) ship detection anchors are fixed, and the performance of multi-scale detection is poor, a SAR ship detection method based on adaptive anchors multi-scale enhancement network(AA-MSE-Net) is proposed. Firstly, AA-MSE-Net introduces adaptive anchors mechanism to generate high quality anchors that adapt to the target shape, which enhances the ability to describe the target shape. Secondly, AA-MSE-Net proposes a multi-scale enhancement feature pyramid network to fusion enhanced multi-scale features, thus enhance the multi-scale description ability of the network. Finally, AA-MSE-Net introduces deformable convolution in the backbone to extract ship deformation features and further improve detection accuracy. Experiments show that the average precision of AA-MSE-Net on the public SAR ship detection dataset is higher than that of eight comparison methods.

Key words: synthetic aperture radar (SAR), ship detection, adaptive anchor, scale enhancement

中图分类号: