1 |
ZHANG T W , ZHANG X L , SHI J , et al. HyperLi-Net: a hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 123- 153.
doi: 10.1016/j.isprsjprs.2020.05.016
|
2 |
ZHANG T W , ZHANG X L . ShipDeNet-20: an only 20 convolution layers and < 1 MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (7): 1234- 1238.
doi: 10.1109/LGRS.2020.2993899
|
3 |
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13 (14): 2771.
doi: 10.3390/rs13142771
|
4 |
ZHANG T W , ZHANG X L . A polarization fusion network with geometric feature embedding for SAR ship classification[J]. Pattern Recognition, 2021, 123, 108365.
|
5 |
LIU T , ZHANG J F , GAO G , et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 58 (1): 58- 81.
|
6 |
PELICH R , CHINI M , HOSTACHE R , et al. Large-scale automatic vessel monitoring based on dual-polarization sentinel-1 and AIS data[J]. Remote Sensing, 2019, 11 (9): 1078.
doi: 10.3390/rs11091078
|
7 |
WANG C L , BI F K , ZHANG W P , et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 529- 533.
doi: 10.1109/LGRS.2017.2654450
|
8 |
ZHANG T W , ZHANG X L . Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how[J]. Remote Sensing, 2021, 13 (11): 2091.
doi: 10.3390/rs13112091
|
9 |
ZHANG T W , ZHANG X L . Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
|
10 |
贾晓雅, 汪洪桥, 杨亚聃, 等. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44 (12): 3703- 3709.
doi: 10.12305/j.issn.1001-506X.2022.12.14
|
|
JIA X Y , WANG H Q , YANG Y R , et al. Anchor free SAR image ship target detection method based on the YOLO framework[J]. Systems Engineering and Electronics, 2022, 44 (12): 3703- 3709.
doi: 10.12305/j.issn.1001-506X.2022.12.14
|
11 |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2022-12-05]. http://arXiv.org/abs/1804.02767.
|
12 |
GAO F , SHI W , WANG J , et al. Enhanced feature extraction for ship detection from multi-resolution and multi-scene synthetic aperture radar (SAR) images[J]. Remote Sensing, 2019, 11 (22): 2694.
doi: 10.3390/rs11222694
|
13 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
14 |
SHAO Z K , ZHANG X L , ZHANG T W , et al. RBFA-Net: a rotated balanced feature-aligned network for rotated SAR ship detection and classification[J]. Remote Sensing, 2022, 14 (14): 3345.
doi: 10.3390/rs14143345
|
15 |
ZHANG T W , ZHANG X L . A full-level context squeeze-and-excitation ROI extractor for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
|
16 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
17 |
CAI Z W , VASCONCELOS N . Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2019, 43 (5): 1483- 1498.
|
18 |
ZHANG T W , ZHANG X L . High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11 (10): 1206.
doi: 10.3390/rs11101206
|
19 |
ZHANG T W , ZHANG X L , SHI J , et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 4004905.
|
20 |
WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2965-2974.
|
21 |
BAO J Y , ZHANG X L , ZHANG T W , et al. ShadowDeNet: a moving target shadow detection network for video SAR[J]. Remote Sensing, 2022, 14 (2): 320.
doi: 10.3390/rs14020320
|
22 |
ZHOU D F, FANG J, SONG X B, et al. IOU loss for 2D/3D object detection[C]//Proc. of the International Conference on 3D Vision, 2019: 85-94.
|
23 |
ZHANG T W , ZHANG X L . HTC+ for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14 (10): 2395.
doi: 10.3390/rs14102395
|
24 |
ZHANG T W , ZHANG X L , KE X , et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12 (18): 2997.
doi: 10.3390/rs12182997
|
25 |
ZHANG T W , ZHANG X L . A mask attention interaction and scale enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
|
26 |
PENG H , TAN X D . Improved YOLOX's anchor-free SAR image ship target detection[J]. IEEE Access, 2022, 10, 70001- 70015.
doi: 10.1109/ACCESS.2022.3188387
|
27 |
张冬冬, 王春平, 付强. 基于特征增强网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2023, 45 (4): 1032- 1039.
|
|
ZHANG D D , WANG C P , FU Q . Ship target detection in SAR image based on feature-enhanced network[J]. Systems Engineering and Electronics, 2023, 45 (4): 1032- 1039.
|
28 |
刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 国土资源遥感, 2021, 33 (3): 97- 106.
|
|
LIU W J , GAO J K , QU H C , et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33 (3): 97- 106.
|
29 |
ZHANG T W , ZHANG X L , SHI J , et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11 (21): 2483.
doi: 10.3390/rs11212483
|
30 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
31 |
PANG J M, CHEN K, SHI J, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
|
32 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 764-773.
|
33 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
34 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690
|
35 |
ZHANG T W , ZHANG X L , KE X , et al. HOG-ShipCLSNet: a novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 1- 22.
|
36 |
EVERINGHAM M , ESLAMI S M A , VAN G L , et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136.
doi: 10.1007/s11263-014-0733-5
|
37 |
ZHANG T W , ZHANG X L , LIU C , et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 190- 207.
doi: 10.1016/j.isprsjprs.2021.10.010
|
38 |
WEI S J , SU H , MING J , et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12 (1): 167.
doi: 10.3390/rs12010167
|
39 |
WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195.
|
40 |
ZHANG X S, WAN F, LIU C, et al. FreeAnchor: learning to match anchors for visual object detection[C]//Proc. of the 33rd International Conference on Neural Information Processing Systems, 2019: 147-155.
|
41 |
LU X, LI B Y, YUE Y X, et al. Grid RCNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7363-7372.
|