9 |
HENNESST B, YARDLEY H, HOLDSWORTH D A, et al. Velocity ambiguity resolution using opposite chirprates with LFM radar[C]//Proc. of the IEEE International Radar Conference, 2023.
|
10 |
YANG L , WANG T , BAO Z . New method for solving the ambiguity of the radial velocity of a moving target[J]. Journal of Xidian University, 2009, 36 (2): 189- 192.
|
11 |
WANG Z F, YU J P, YANG Y H. Resolving range and velocity ambiguity effectively and efficiently with GPU[C]//Proc. of the International Conference on Radar, 2021: 1122-1126.
|
12 |
KAHLERT M, FEI T, TEBRUEGGE C, et al. Doppler ambiguity resolution for a pmcw automotive radar system[C]//Proc. of the 20th European Radar Conference, 2023: 73-76.
|
13 |
WANG Y X, ZHU S Q, LIAO G S, et al. Resolving Doppler ambiguity via spread phase alignment in FDA-MIMO radar[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023.
|
14 |
ZHU J, LI Y, DUAN C D, et al. A range and velocity ambiguity resolution method based on ambiguity matrix completion and elimination with low SNR[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019.
|
15 |
QUINT A , NUSS B , DIEWALD A , et al. System architecture for a compact high range resolution frequency comb OFDM radar[J]. International Journal of Microwave and Wireless Technologies, 2023, 15 (6): 975- 982.
doi: 10.1017/S1759078722001441
|
16 |
DING C , MU H L , ZHANG Y . A multicomponent linear frequency modulation signal-separation network for multi-moving-target imaging in the SAR-ground-moving-target indication system[J]. Remote Sensing, 2024, 16 (4): 605.
doi: 10.3390/rs16040605
|
17 |
郁文贤, 何劲, 舒汀, 等. 基于子带处理的宽带阵列雷达的干扰抑制方法[J]. 现代雷达, 2021, 43 (8): 1- 8.
|
|
YU W X , HE J , SHU T , et al. Jamming cancellation method for wideband array radar based on subbanding[J]. Modern Radar, 2021, 43 (8): 1- 8.
|
18 |
WANG Y P, LEI M, ZHANG Y, et al. A high precision ballistic target recognition framework using multi-subband fusion[C]// Proc. of the International Applied Computational Electromagnetics Society Symposium, 2023.
|
19 |
HUANG Q , WEI S P , ZHANG L . Radar interferometric phase ambiguity resolution using viterbi algorithm for high-precision space target positioning[J]. IEEE Signal Processing Letters, 2023, 30, 1242- 1246.
doi: 10.1109/LSP.2023.3313092
|
20 |
TRUNK G, BROCKETT S. Range and velocity ambiguity re-solution[C]//Proc. of the IEEE International Radar Conference, 1993: 146-149.
|
1 |
HUO T Y, LI Y K, YANG C X, et al. A novel imaging method for MEO SAR-GMTI systems[C]//Proc. of the IEEE Inter-national Geoscience and Remote Sensing Symposium, 2022: 2498-2501.
|
2 |
ZHANG Y H, LI Y K. A study on range equation modeling for distributed MEO SAR-GMTI[C]// Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 8154-8157.
|
3 |
ZONNO M, KRIEGER G, MITTERMAYER J, et al. A MirrorSAR-based single-pass dual-baseline SAR interferometer for the generation of very high quality DEMs[C]//Proc. of the European Conference on Synthetic Aperture Rada, 2018.
|
4 |
LI Y F, DUAN K Q, WANG Y L. Reduced-dimensional 3D-STAP with multibeam and multichannel for space-based radar[C]//Proc. of the IEEE International Radar Conference, 2023.
|
5 |
CHEN J Y, HUANG P H, XI P L, et al. Approach for along-track baseline distribution design in a multi-satellite distributed space-based radar system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 6125-6128.
|
6 |
HUANG L B , LI X , WAN W T , et al. Frequency diverse array introduced into SAR GMTI to mitigate blind velocity and Doppler ambiguity[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4507605.
|
7 |
DOERRY A W. A study of pulse-Doppler radar pulse repetition frequency[EB/OL]. [2023-12-16]. https://doi.org/10.2172/2431758.
|
8 |
DINH K N, VAN L N, NHU T N, et al. Ambiguity resolution for ground-based pulse-doppler radars using multiple medium PRF[C]//Proc. of the International Conference on Signal Processing Systems, 2022: 102-108.
|
21 |
LEI W, LONG T, HAN Y Q. Resolution of range and velocity ambiguity for a medium pulse Doppler radar[C]//Proc. of the IEEE International Radar Conference, 2000: 560-564.
|
22 |
WANG W J , XIA X G . A closed-form robust chinese remainder theorem and its performance analysis[J]. IEEE Trans. on Signal Processing, 2010, 58 (11): 5655- 5666.
doi: 10.1109/TSP.2010.2066974
|
23 |
CHI C , VISHNU H , BENG K T , et al. Robust resolution of velocity ambiguity for multifrequency pulse-to-pulse coherent doppler sonars[J]. IEEE Journal of Oceanic Engineering, 2019, 45 (4): 1506- 1515.
|
24 |
张小涵, 刘润华, 汪枫, 等. 基于筛选法的球载雷达解距离模糊改进方法[J]. 中国电子科学研究院学报, 2019, 14 (2): 189- 195.
|
25 |
CHEN J , YANG C G , WANG D , et al. Optical imaging method of synthetic-aperture radar for moving targets[J]. Remote Sensing, 2024, 16 (7): 1170.
doi: 10.3390/rs16071170
|
26 |
YANG B , LIU S Q , ZHANG H , et al. A velocity ambiguity resolution algorithm based on improved hypothetical phase compensation for TDM-MIMO radar traffic target imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 3409- 3424.
doi: 10.1109/JSTARS.2024.3352082
|
27 |
DING C S . Chinese remainder theorem[M]. Singapore: World Scientific, 1996.
|
28 |
WANG H , KAVEH M . Coherent signal-subspace processing for the detection and estimation of arrival wideband sources[J]. IEEE Trans. on Acoustics Speech & Signal Processing, 1985, 33 (4): 823- 831.
|
29 |
CAO S L , ZENG W G , XU H Q . Broadband DOA estimation method based on eigenvector space focusing[J]. Systems Engineering and Electronics, 2021, 43 (2): 294- 299.
|
30 |
ROSEN P , HENSLEY S , JOUGHIN I , et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88 (3): 333- 382.
doi: 10.1109/5.838084
|