系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2475-2485.doi: 10.12305/j.issn.1001-506X.2025.08.06
• 电子技术 • 上一篇
于营1,2(), 王春平1, 徐金辉2, 吕述杭3, 付强1,*, 陈明2
收稿日期:
2024-08-12
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
付强
E-mail:yingyu@sanyau.edu.cn
作者简介:
于 营(1990—),女,副教授,博士,主要研究方向为计算机视觉、语义分割、目标检测基金资助:
Ying YU1,2(), Chunping WANG1, Jinhui XU2, Shuhang LYU3, Qiang FU1,*, Ming CHEN2
Received:
2024-08-12
Online:
2025-08-25
Published:
2025-09-04
Contact:
Qiang FU
E-mail:yingyu@sanyau.edu.cn
摘要:
山体滑坡实时检测对于减少人员伤亡和财产损失至关重要。为了解决传统图像识别方法在滑坡监测中的时间滞后和误判问题,构建了一个多域数据集,以增强对山体滑坡和沙尘暴视觉特征的理解,并提出一种剪枝和增强的山体滑坡自动检测模型。该模型基于改进的VanillaNet网络,结合动态多头注意力检测模块,显著提高了山体滑坡场景的视觉感知能力。此外,采用基于性能感知近似的全局通道剪枝(performance-aware approximation of global channel pruning,PAGCP)算法对该模型进行了压缩,以适应嵌入式部署。实验结果表明,所提出的模型在达到实时检测的前提下,显著提高了山体滑坡场景检测的准确性,对山体滑坡自然灾害监测与预警具有参考价值。
中图分类号:
于营, 王春平, 徐金辉, 吕述杭, 付强, 陈明. PE-Net:一种优化剪枝的实时山体滑坡检测网络[J]. 系统工程与电子技术, 2025, 47(8): 2475-2485.
Ying YU, Chunping WANG, Jinhui XU, Shuhang LYU, Qiang FU, Ming CHEN. PE-Net: a real-time landslide detection network with optimized pruning[J]. Systems Engineering and Electronics, 2025, 47(8): 2475-2485.
表1
主干网络概要"
阶段 | 层(类型) | Kernel 配置 | 输出尺寸 |
阶段1 | Input | — | (640,640,3) |
Conv_1 | 4×4,3 | (160,160,3) | |
B_N_1 | 1×1,64 | (160,160,64) | |
阶段2 | Max_pooling | 2×2 | (80,80,64) |
Conv_2 | 3×3,64 | (80,80,64) | |
B_N_2 | 1×1,128 | (80,80,128) | |
阶段3~阶段4 | Max_pooling | 2×2 | (40,40,128) |
Conv_3/4 | 3×3,128 | (40,40,128) | |
B_N_3/4 | 1×1,256 | (40,40,256) | |
阶段5~阶段7 | Max_pool | 2×2 | (40,40,256) |
Conv_5/6/7 | 3×3,256 | (40,40,256) | |
B_N_5/6/7 | 1×1,512 | (40,40,512) | |
阶段8~阶段9 | Max_pooling | 2×2 | (40,40,512) |
Conv_8/9 | 3×3,512 | (40,40,512) | |
B_N_8/9 | 1×1, | (40,40, | |
阶段10~阶段11 | Max_pooling | 2×2 | (20,20, |
Conv_10/11 | 3×3, | (20,20, | |
B_N_10/11 | 1×1, | (20,20, |
表3
与最先进模型的对比实验结果"
模型 | GFLOPs | 参数/×106 | mAPtest@50 | mAPtest@[0.5:0.95] |
Cascade-RCNN [ | 301.0 | 88.015 | 0.663 | 0.392 |
Faster-RCNN [ | 419.0 | 99.246 | 0.652 | 0.352 |
定位蒸馏[ | 267.0 | 51.251 | 0.431 | 0.193 |
YOLOv5s [ | 108.2 | 46.144 | 0.695 | 0.417 |
YOLOv7 [ | 103.2 | 35.632 | 0.623 | 0.418 |
YOLOv8l [ | 164.8 | 43.608 | 0.686 | 0.423 |
YOLOv9c [ | 236.6 | 48.352 | 0.768 | 0.426 |
YOLOv10b [ | 97.7 | 19.936 | 0.693 | 0.344 |
YOLOv10l [ | 126.5 | 25.117 | 0.698 | 0.364 |
本文算法 | 111.2 | 40.691 | 0.729 | 0.436 |
表8
模型剪枝性能结果"
模型 | GFLOPs | 参数/×106 | mAPtest@50 | mAPtest@[0.5:0.95] | FPS |
不剪枝 | 363.4 | 114.429 | 0.724 | 0.428 | 31.94 |
Pruned 1 | 141.0 | 48.242 | 0.665 (↓8.15%) | 0.396 (↓7.48%) | 68.49 (↑114.43%) |
Pruned 2 | 141.1 | 49.103 | 0.684 (↓5.52%) | 0.414 (↓3.27%) | 66.23 (↑107.36%) |
Pruned 3 | 126.3 | 46.526 | 0.674 (↓6.91%) | 0.395 (↓7.71%) | 75.19 (↑135.40%) |
Pruned 4 | 127.9 | 43.108 | 0.672 (↓7.18%) | 0.410 (↓4.21%) | 72.46 (↑126.87%) |
Pruned 5 | 111.2 | 40.691 | 0.729 (↓0.55%) | 0.436 (↑1.87%) | 75.19 (↑135.41%) |
Pruned 6 | 60.9 | 24.483 | 0.687 (↓5.11%) | 0.404 (↓5.61%) | 109.89 (↑244.05%) |
Pruned 7 | 27.6 | 16.542 | 0.690 (↓4.70%) | 0.374 (↓12.62%) | 175.44 (↑449.28%) |
Pruned 8 | 21.7 | 13.611 | 0.575 (↓20.58%) | 0.317 (↓25.93%) | 196.08 (↑513.90%) |
Pruned 9 | 19.2 | 13.874 | 0.397 (↓45.17%) | 0.221 (↓48.36%) | 208.33 (↑552.26%) |
1 |
JIA H Y, WANG Y J, GE D Q, et al. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247, 111899.
doi: 10.1016/j.rse.2020.111899 |
2 | ZHAO C Y, LIU X J, GAO Y, et al. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology[J]. Journal of Geomechanics, 2022, 26 (6): 981- 994. |
3 | ZHANG L F. Early identification of hidden dangers of loess landslide based on time series InSAR: a case study of southwest Bailuyuan[J]. Northwestern Geology, 2023, 56 (3): 250- 257. |
4 | 许濒支, 朱庆, 李海峰, 等. 基于多尺度深度注意力模型的遥感影像滑坡提取方法[J]. 测绘地理信息, 2022, 47 (3): 108- 112. |
XU B Z, ZHU Q, LI H F, et al. A landslide extraction method of remote sensing image based on multi-scale depth attention model[J]. Journal of Geomatics, 2022, 47 (3): 108- 112. | |
5 |
YANG Y, YANG J T, XU C D, et al. Local-scale landslide susceptibility mapping using the B-GeoSVC model[J]. Landslides, 2019, 16 (7): 1301- 1312.
doi: 10.1007/s10346-019-01174-y |
6 |
NAPOLI M D, CAROTENUTO F, CEVASCO A, et al. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability[J]. Landslides, 2020, 17 (8): 1897- 1914.
doi: 10.1007/s10346-020-01392-9 |
7 | 陈雪梅, 刘志恒, 周绥平, 等. 基于HRNet的高分辨率遥感影像道路提取方法[J]. 系统工程与电子技术, 2024, 46 (4): 1167- 1173. |
CHEN X M, LIU Z H, ZHOU S P, et al. Road extraction from high-resolution remote sensing images based on HRNet[J]. Systems Engineering and Electronics, 2024, 46 (4): 1167- 1173. | |
8 |
CHENG G, GUO L, ZHAO T Y, et al. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. International Journal of Remote Sensing, 2013, 34 (1): 45- 59.
doi: 10.1080/01431161.2012.705443 |
9 |
AMATYA P, KIRSCHBAUM D, STANLEY T. Use of very high-resolution optical data for landslide mapping and susceptibility analysis along the Karnali Highway, Nepal[J]. Remote Sensing, 2019, 11 (19): 2284.
doi: 10.3390/rs11192284 |
10 | 张居福. 自动化监测系统在滑坡变形监测中的应用研究[J]. 工程技术研究, 2023, 8 (15): 103- 105. |
ZHANG J F. Research on the application of automatic monitoring system in landslide deformation monitoring[J]. Engineering and Technological Research, 2023, 8 (15): 103- 105. | |
11 | WANG Y T, GAO H, LIU S H, et al. Landslide detection based on deep learning and remote sensing imagery: a case study in Linzhi City[J]. Natural Hazards Research, 2025, 5 (1): 95- 108. |
12 |
JI S P, YU D W, SHEN C Y, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17 (6): 1337- 1352.
doi: 10.1007/s10346-020-01353-2 |
13 | CASAGLI N, INTRIERI E, TOFANI V, et al. Landslide detection, monitoring and prediction with remote-sensing techniques[J]. Nature Reviews Earth & Environment, 2023, 4, 51- 64. |
14 | 胡邦国, 孙晓龙, 陈立, 等. 天地一体化地物变化监测与风险评估[J]. 中国矿业, 2020, 29 (S2): 135- 141. |
HU B G, SUN X L, CHEN L, et al. Automatic detection technology and system for ground feature changes and geological risk assessment along oil pipeline based on space-ground-joint sensing[J]. China Mining Magazine, 2020, 29 (S2): 135- 141. | |
15 |
LU J, GONG P H, YE J P, et al. A survey on machine learning from few samples[J]. Pattern Recognition, 2023, 139, 109480.
doi: 10.1016/j.patcog.2023.109480 |
16 | WANG Y Q, YAO Q M, KWOK J T,. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53 (3): 226931458. |
17 | ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[C]// Proc. of the 6th International Conference on Learning Representations, 2018. |
18 | ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[EB/OL].https://arxiv.org/abs/1708.04896. |
19 | CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet: the power of minimalism in deep learning[C]// Proc. of the 37th Conference on Neural Information Processing Systems, 2023. |
20 | DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7369−7378. |
21 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016: 770−778. |
22 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// Proc. of the 3th International Conference on Learning Representations , 2015. |
23 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012−10022. |
24 | VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]// Proc. of the International Conference on Advances in Data Engineering and Intelligent Computing Systems, 2024. |
25 |
LIU J F, LIU Z B. YOLOv5s-BC: an improved YOLOv5s-based method for real-time apple detection[J]. Journal of Real-Time Image Processing, 2024, 21 (3): 88.
doi: 10.1007/s11554-024-01473-1 |
26 | 扈琪, 胡绍海, 刘帅奇. 基于多层显著性模型的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2024, 46 (2): 478- 487. |
HU Q, HU S H, LIU S Q. Ship detection in SAR image based on multi-layer saliency model[J]. Systems Engineering and Electronics, 2024, 46 (2): 478- 487. | |
27 |
YE H C, ZHANG B, CHEN T, et al. Performance-aware approximation of global channel pruning for multitask CNNs[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45 (8): 10267- 10284.
doi: 10.1109/TPAMI.2023.3260903 |
28 |
YU Y, WANG C P, FU Q, et al. Techniques and challenges of image segmentation: a review[J]. Electronics., 2023, 12, 1199.
doi: 10.3390/electronics12051199 |
29 |
于营, 王春平, 付强, 等. 语义分割评价指标和评价方法综述[J]. 计算机工程与应用, 2023, 59 (6): 57- 69.
doi: 10.3778/j.issn.1002-8331.2207-0139 |
YU Y, WANG C P, FU Q, et al. Survey of evaluation metrics and methods for semantic segmentation[J]. Computer Engineering and Applications, 2023, 59 (6): 57- 69.
doi: 10.3778/j.issn.1002-8331.2207-0139 |
|
30 | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154−6162. |
31 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
32 | ZHENG Z H, YE R G, WANG P, et al. Localization distillation for dense object detection[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 9407−9416. |
33 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464−7475. |
34 | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]// Proc. of the 18th European Conference on Computer Vision, 2025. |
35 | WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection [C]// Proc. of the 38th Conference on Neural Information Processing Systems, 2024, 37: 107984−108011. |
[1] | 蓝舒尧, 李宇, 张春华, 迟骋, 陈春辉. 垂直阵分集束控影区探测信号发射策略[J]. 系统工程与电子技术, 2025, 47(8): 2454-2462. |
[2] | 贾竣皓, 陈学斌, 李璋峰, 叶春茂. 空间群目标ISAR成像与检测方法[J]. 系统工程与电子技术, 2025, 47(6): 1843-1854. |
[3] | 韩静雯, 杨勇, 连静, 王威. 大掠射角下幅相极化特征融合雷达导引头舰船检测方法[J]. 系统工程与电子技术, 2025, 47(4): 1127-1135. |
[4] | 姜杰, 张立民, 刘凯, 闫文君, 王萌. 基于任务对齐学习的红外船舶目标检测方法[J]. 系统工程与电子技术, 2025, 47(1): 34-40. |
[5] | 韩子硕, 范喜全, 付强, 马传焱, 张冬冬. 面向无人机视角的多源信息融合目标检测[J]. 系统工程与电子技术, 2025, 47(1): 52-61. |
[6] | 任晓昱, 林瑞奇, 邓云开, 田卫明, 胡程. 基于模态分解的地基雷达慢速弱目标检测方法[J]. 系统工程与电子技术, 2025, 47(1): 70-80. |
[7] | 蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋. 基于解耦的小样本目标检测方法研究[J]. 系统工程与电子技术, 2024, 46(9): 2941-2950. |
[8] | 颜上取, 付耀文, 张文鹏, 杨威, 余若峰, 张法桐. 视频合成孔径雷达技术发展现状综述[J]. 系统工程与电子技术, 2024, 46(8): 2650-2666. |
[9] | 周利, 胡杰民, 付连庆, 凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法[J]. 系统工程与电子技术, 2024, 46(4): 1247-1254. |
[10] | 黄思佳, 宋纯锋, 李璇. 基于可变尺度先验框的声呐图像目标检测[J]. 系统工程与电子技术, 2024, 46(3): 771-778. |
[11] | 扈琪, 胡绍海, 刘帅奇. 基于多层显著性模型的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2024, 46(2): 478-487. |
[12] | 龚峻扬, 付卫红, 刘乃安. SAR图像目标轮廓增强预处理模块设计[J]. 系统工程与电子技术, 2024, 46(12): 4010-4017. |
[13] | 薛峰涛, 孙天宇, 杨益民, 杨健. 基于全局特征融合的SAR图像旋转舰船目标检测算法[J]. 系统工程与电子技术, 2024, 46(12): 4044-4053. |
[14] | 关键, 姜星宇, 刘宁波, 丁昊, 黄勇. 海杂波背景下的双极化最大特征值目标检测[J]. 系统工程与电子技术, 2024, 46(11): 3715-3725. |
[15] | 宋存利, 柴伟琴, 张雪松. 基于改进YOLO v5算法的道路小目标检测[J]. 系统工程与电子技术, 2024, 46(10): 3271-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||