系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2463-2474.doi: 10.12305/j.issn.1001-506X.2025.08.05
• 电子技术 • 上一篇
收稿日期:
2024-04-18
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
宋子豪
E-mail:yodelsong@163.com
作者简介:
周 焰(1966—),男,教授,博士,主要研究方向为态势理解、深度学习、信息融合
Zihao SONG1,*(), Yan ZHOU1, Wei CHENG1, Hui LI1, Chenhao ZHANG2
Received:
2024-04-18
Online:
2025-08-25
Published:
2025-09-04
Contact:
Zihao SONG
E-mail:yodelsong@163.com
摘要:
针对空中目标意图特征数据缺失问题,提出一种基于对角掩蔽自注意力机制的非自回归缺失值插补方法。该方法以Transformer Encoder为骨架网络,对角掩蔽自注意力确保网络模型更加关注不同时间步之间的时间依赖性和属性相关性,获得更有益的表征;以最小化合并插补损失及重建损失的复合损失函数为学习目标,使得网络模型在准确预测缺失值的同时收敛于观察值的分布。使用仿真系统中同一区域下、包含6种意图类型的特征数据,构造不同缺失率下的数据集对方法进行测试,结果表明:在设定的缺失值比例下,与基于门控循环神经网络的深度学习插补方法相比,该方法的插补偏差降低了19.8%~37.9%。下游意图识别结果显示,经过本文提出方法插补后的数据在同一分类器中表现更好。
中图分类号:
宋子豪, 周焰, 程伟, 黎慧, 张晨浩. 基于对角掩蔽自注意力的空中目标意图特征插补方法[J]. 系统工程与电子技术, 2025, 47(8): 2463-2474.
Zihao SONG, Yan ZHOU, Wei CHENG, Hui LI, Chenhao ZHANG. Imputation method based on diagonal masking self-attention for air target intention recognition features[J]. Systems Engineering and Electronics, 2025, 47(8): 2463-2474.
1 | HAWTHORNE G, ELLIOTT P. Imputing cross-sectional missing data: comparison of common techniques[J]. Australian & New Zealand Journal of Psychiatry, 2005, 39 (7): 583- 590. |
2 |
JADHAV A, PRAMOD D, RAMANATHAN K. Comparison of performance of data imputation methods for numeric dataset[J]. Applied Artificial Intelligence, 2019, 33 (10): 913- 933.
doi: 10.1080/08839514.2019.1637138 |
3 |
JUNNINEN H, NISKA H, TUPPURAINEN K. Methods for imputation of missing values in air quality data sets[J]. Atmospheric Environment, 2004, 38 (18): 2895- 2907.
doi: 10.1016/j.atmosenv.2004.02.026 |
4 | SUN Y, SONG S X, WANG C, et al. Swapping repair for misplaced attribute values[C]//Proc. of the IEEE 36th International Conference on Data Engineering, 2020: 721−732. |
5 | BATISTA G, MONARD M C. A study of k-nearest neighbour as an imputation method[C]//Proc. of the 2nd International Conference on Hybrid Intelligent Systems , 2002: 251−260. |
6 |
JIA X Y, DONG X Y, CHEN M, et al. Missing data imputation for traffic congestion data based on joint matrix factorization[J]. Knowledge-Based Systems, 2021, 225, 107114.
doi: 10.1016/j.knosys.2021.107114 |
7 |
ZHANG P J, REN P, LIU Y, et al. Autoregressive matrix factorization for imputation and forecasting of spatiotemporal structural monitoring time series[J]. Mechanical Systems and Signal Processing, 2022, 169, 108718.
doi: 10.1016/j.ymssp.2021.108718 |
8 |
JUNGER W L, PONCE DE LEON A. Imputation of missing data in time series for air pollutants[J]. Atmospheric Environment, 2015, 102, 96- 104.
doi: 10.1016/j.atmosenv.2014.11.049 |
9 | NELWAMONDO F V, MOHAMED S, MARWALA T. Missing data: a comparison of neural network and expectation maximization techniques[J]. Current Science, 2007, 93 (11): 1514- 1521. |
10 | SONG S X, ZHANG A Q, WANG J M, et al. SCREEN: stream data cleaning under speed constraints[C]//Proc. of the ACM SIGMOD International Conference on Management of Data, 2015: 827−841. |
11 |
SONG S X, ZHANG A Q, CHEN L, et al. Enriching data imputation with extensive similarity neighbors[J]. Proceedings of the VLDB Endowment, 2015, 8 (11): 1286- 1297.
doi: 10.14778/2809974.2809989 |
12 |
WEERAKODY P B, WONG K W, WANG G, et al. A review of irregular time series data handling with gated recurrent neural networks[J]. Neurocomputing, 2021, 441 (21): 161- 178.
doi: 10.1016/j.neucom.2021.02.046 |
13 | CAO W, WANG D, LI J, et al. BRITS: bidirectional recurrent imputation for time series[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 6776−6786. |
14 |
YOON J S, ZAME W R, SCHAAR M. Estimating missing data in temporal data streams using multi-directional recurrent neural networks[J]. IEEE Trans. on Biomedical Engineering, 2019, 66 (5): 1477- 1490.
doi: 10.1109/TBME.2018.2874712 |
15 |
NI Q J, CAO X H. MBGAN: an improved generative adversarial network with multi-head self-attention and bidirectional RNN for time series imputation[J]. Engineering Applications of Artificial Intelligence, 2022, 115, 105232.
doi: 10.1016/j.engappai.2022.105232 |
16 | LUO Y H, CAI X R, ZHANG Y, et al. Multivariate time series imputation with generative adversarial networks[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 1603 - 1614. |
17 | WU Z J, MA C, SHI X C, et al. BRNN-GAN: generative adversarial networks with bi-directional recurrent neural networks for multivariate time series imputation[C]//Proc. of the IEEE 27th International Conference on Parallel and Distributed Systems, 2021: 217−224. |
18 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proc. of the 30th International Conference on Neural Information Processing Systems, 2016: 2234 - 2242. |
19 |
陈俊扬, 戴志江, 李雪亮, 等. 基于强化学习的多变量时序数据缺失值补全方法[J]. 中国科技论文, 2023, 18 (11): 1229- 1212.
doi: 10.3969/j.issn.2095-2783.2023.11.007 |
CHEN J Y, DAI Z J, LI X L, et al. Reinforcement learning based missing value completion method for multivariate time series data[J]. China Sciencepaper, 2023, 18 (11): 1229- 1212.
doi: 10.3969/j.issn.2095-2783.2023.11.007 |
|
20 |
ALABADLA M, SIDI F, ISHAK I, et al. Systematic review of using machine learning in imputing missing values[J]. IEEE Access, 2022, 10, 44483- 44502.
doi: 10.1109/ACCESS.2022.3160841 |
21 | 任利强, 贾舒宜, 王海鹏, 等. 基于深度学习的时间序列分类研究综述[EB/OL]. [2024-03-31]. http://kns.cnki.net/kcms/detail/11.4494.TN.20240109.0749.008.html. |
REN L Q, JIA S Y, WANG H P. A review of research on time series classification based on deep learning[EB/OL]. [2024-03-31]. http://kns.cnki.net/kcms/detail/11.4494.TN.20240109.0749.008.html. | |
22 | 石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述[J]. 数据分析与知识发现, 2020, 4 (5): 122- 124. |
SHI L, WANG Y, CHENG Y, et al. Review of attention mechanism in natural language processing[J]. Data Analysis and Knowledge Discovery, 2020, 4 (5): 122- 124. | |
23 | 吴嘉俊, 苏春, 张玉茹. 基于双重自注意力机制和长短时记忆网络的剩余寿命预测[J]. 系统工程与电子技术, 2024, 46 (6): 1986- 1994. |
WU J J, SU C, ZHANG Y R. Remaining useful life prediction based on double self-attention mechanism and long short-term memory network[J]. Systems Engineering and Electronics, 2024, 46 (6): 1986- 1994. | |
24 | 张春杰, 王冠博, 陈奇, 等. 基于纯自注意力机制的毫米波雷达手势识别[J]. 系统工程与电子技术, 2024, 46 (3): 859- 867. |
ZHANG C J, WANG G B, CHEN Q, et al. Gesture recognition based on millimeter-wave radar with pure self-attention mechanism[J]. Systems Engineering and Electronics, 2024, 46 (3): 859- 867. | |
25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000 - 6010. |
26 | BRITTAIN J, CENDON M, NIZZI J, et al. Data scientist’s analysis toolbox: comparison of Python, R, and SAS performance[J]. SMU Data Science Review, 2018, 1 (2): 7. |
27 |
LIEW A W C, LAW N F, YAN H. Missing value imputation for gene expression data: computational techniques to recover missing data from available information[J]. Briefings in Bioinformatics, 2011, 12 (5): 498- 513.
doi: 10.1093/bib/bbq080 |
28 |
TANG F, ISHWARAN H. Random forest missing data algorithms[J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2017, 10 (6): 363- 377.
doi: 10.1002/sam.11348 |
29 |
DU W J, COTE D, LIU Y. SAITS: self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219, 119619.
doi: 10.1016/j.eswa.2023.119619 |
[1] | 郭泽坤, 杨洪飞, 刘峥, 谢荣, 冉磊, 李嘉楠. 基于MGMD空间的窄带雷达空中目标识别方法[J]. 系统工程与电子技术, 2025, 47(4): 1136-1145. |
[2] | 蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋. 基于解耦的小样本目标检测方法研究[J]. 系统工程与电子技术, 2024, 46(9): 2941-2950. |
[3] | 尹建国, 盛文, 蒋伟. 基于深度残差收缩网络的雷达空中目标识别[J]. 系统工程与电子技术, 2024, 46(9): 3012-3018. |
[4] | 刘帅康, 曹伟, 管志强, 杨学岭, 许金鑫. 基于RMDLPP的雷达空中目标分类[J]. 系统工程与电子技术, 2024, 46(4): 1220-1228. |
[5] | 马钰棠, 孙鹏, 张杰勇, 王鹏, 闫云飞, 赵亮. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747-3755. |
[6] | 陈浩, 任卿龙, 滑艺, 邱宇宁. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853. |
[7] | 邓海军,尹全军,胡记文,查亚兵. 基于MEBN的战术意图识别[J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2374-2379. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||