系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2463-2474.doi: 10.12305/j.issn.1001-506X.2025.08.05

• 电子技术 • 上一篇    

基于对角掩蔽自注意力的空中目标意图特征插补方法

宋子豪1,*(), 周焰1, 程伟1, 黎慧1, 张晨浩2   

  1. 1. 空军预警学院预警情报系,湖北 武汉 430019
    2. 中国人民解放军 95835部队,新疆 和硕 841700
  • 收稿日期:2024-04-18 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 宋子豪 E-mail:yodelsong@163.com
  • 作者简介:周 焰(1966—),男,教授,博士,主要研究方向为态势理解、深度学习、信息融合
    程 伟(1977—),男,副教授,博士,主要研究方向为雷达通信一体化、智能天线
    黎 慧(1982—),女,副教授,博士,主要研究方向为数据融合
    张晨浩(1996—),男,工程师,博士,主要研究方向为态势分析、情报处理与分析

Imputation method based on diagonal masking self-attention for air target intention recognition features

Zihao SONG1,*(), Yan ZHOU1, Wei CHENG1, Hui LI1, Chenhao ZHANG2   

  1. 1. Department of Early Warning Intelligence,Early Warning Academy,Wuhan 430019,China
    2. Unit 95835 of the PLA,Heshuo 841700,China
  • Received:2024-04-18 Online:2025-08-25 Published:2025-09-04
  • Contact: Zihao SONG E-mail:yodelsong@163.com

摘要:

针对空中目标意图特征数据缺失问题,提出一种基于对角掩蔽自注意力机制的非自回归缺失值插补方法。该方法以Transformer Encoder为骨架网络,对角掩蔽自注意力确保网络模型更加关注不同时间步之间的时间依赖性和属性相关性,获得更有益的表征;以最小化合并插补损失及重建损失的复合损失函数为学习目标,使得网络模型在准确预测缺失值的同时收敛于观察值的分布。使用仿真系统中同一区域下、包含6种意图类型的特征数据,构造不同缺失率下的数据集对方法进行测试,结果表明:在设定的缺失值比例下,与基于门控循环神经网络的深度学习插补方法相比,该方法的插补偏差降低了19.8%~37.9%。下游意图识别结果显示,经过本文提出方法插补后的数据在同一分类器中表现更好。

关键词: 意图识别, 空中目标, 缺失值插补, 多变量时间序列, 对角掩蔽自注意力

Abstract:

A non-autoregressive imputation method based on diagonal masking self-attention mechanism is proposed to address the issue of missing values in features for air target intention recognition. The method utilizes the Transformer Encoder as its backbone. Diagonal masking self-attention ensures that the network model pays more attention to temporal dependencies and attribute correlations between different time steps, resulting in more useful representations. The learning objective is defined as minimizing a composite loss function that combines imputation loss and reconstruction loss. This objective enables the network model to accurately predict missing values while simultaneously converging towards the distribution of the observed values. The method is tested using feature data from the same region in the simulated system. The data cover six types of intentions, and datasets are constructed with different missing rates. The results indicate that the method reduces imputation bias by 19.8% to 37.9% compared to the deep learning imputation methods based on gated recurrent neural networks for a set percentage of missing values. The results of downstream intention recognition indicate that the data imputed after applying the proposed method performs better in the same classifier.

Key words: intention recognition, air target, missing value imputation, multivariate time series, diagonal masking self-attention

中图分类号: