系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1127-1135.doi: 10.12305/j.issn.1001-506X.2025.04.09

• 传感器与信号处理 • 上一篇    下一篇

大掠射角下幅相极化特征融合雷达导引头舰船检测方法

韩静雯1, 杨勇1,*, 连静2, 王威1   

  1. 1. 国防科技大学电子科学学院, 湖南 长沙 410073
    2. 北京电子工程总体研究所, 北京 100854
  • 收稿日期:2023-11-20 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 杨勇
  • 作者简介:韩静雯 (1998—), 女, 硕士研究生, 主要研究方向为极化雷达抗无源干扰
    杨勇 (1985—), 男, 教授, 硕士研究生导师, 博士, 主要研究方向为极化雷达低空目标检测
    连静 (1998—), 女, 助理工程师, 硕士, 主要研究方向为极化雷达低空目标检测
    王威 (1997—), 男, 硕士研究生, 主要研究方向为海杂波背景下的目标检测
  • 基金资助:
    国家自然科学基金(62171447)

Ship detection method of amplitude-phase polarization feature fusion for radar seeker at high grazing angle

Jingwen HAN1, Yong YANG1,*, Jing LIAN2, Wei WANG1   

  1. 1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
    2. Beijing Institute of Electronic Engineering, Beijing 100854, China
  • Received:2023-11-20 Online:2025-04-25 Published:2025-05-28
  • Contact: Yong YANG

摘要:

大掠射角下海面目标信号往往淹没在强海杂波中, 给雷达导引头目标检测带来了严峻的挑战。为改善大掠射角下雷达检测微弱目标性能, 提出一种基于多特征融合的海面目标检测方法。首先, 通过分析大掠射角下雷达导引头实测数据, 发现海杂波和舰船在展开相位差均值、同极化比相位均值和极差、同极化幅均比4个幅相极化特征方面存在较大差异。其次, 结合支持向量机方法, 与已有特征集对比, 验证了海杂波与舰船目标+海杂波在该四维特征空间可分性更高。进而, 对分类器加以虚警控制, 提出一种幅相特征融合的海面目标检测方法。最后, 利用实验数据验证了所提方法可以在大掠射角下实现雷达对海面目标的有效检测。

关键词: 目标检测, 海杂波, 大掠射角, 雷达导引头

Abstract:

The sea surface target signal at high grazing angle is often submerged in the strong sea clutter, which brings a severe challenge to the target detection of radar seeker. In order to improve the performance of radar detection of weak targets at high grazing angle, a target detection method of sea surface targets based on multi-feature fusion is proposed. Firstly, it is found that there are big differences between sea clutter and ship in four amplitude-phase polarization features, including the mean of unfolded phase difference, the mean and the difference of co-polarization ratio phase, and the ratio of average co-polarization amplitude, by analyzing the experimental data of radar seeker working at high grazing angle. Secondly, combined with the support vector machine (SVM) method, it is verified that the sea clutter and ship target with sea clutter are more separable in the four-dimensional feature space in comparison with the existing feature sets. Then the false alarm control is applied to the classifier, a sea surface targets detection method based on the fusion of amplitude and phase features is proposed. Finally, the experimental data are used to verify that the proposed method can effectively achieve the detection of sea surface targets at high grazing angle.

Key words: target detection, sea clutter, high grazing angle, radar seeker

中图分类号: