1 |
LI G C , LI G , YOU H . Distributed multiple resolvable group targets tracking based on hypergraph matching[J]. IEEE Sensors Journal, 2023, 23 (9): 9669- 9676.
doi: 10.1109/JSEN.2023.3260866
|
2 |
SUN X Y , LI S X , GU P F , et al. Estimating number of group targets arranged in linear array via forward-backward matrix pencil method[J]. IET Radar, Sonar & Navigation, 2023, 17 (4): 642- 651.
|
3 |
ZHANG Y S , SONG Y P , ZHANG W P , et al. A discrete hough transform-based hierarchical statistics detection method for linearly distributed group targets in SAR images[J]. IEEE Sensors Journal, 2023, 23 (17): 19606- 19622.
doi: 10.1109/JSEN.2023.3294225
|
4 |
HUANG B , ORLANDO D , WANG W Q , et al. Adaptive multiple targets detection for FDA-MIMO radar with Gaussian clutter[J]. Signal Processing, 2023, 205, 108893.
doi: 10.1016/j.sigpro.2022.108893
|
5 |
GUO Y D, GONG J. Group targets tracking using maximum entropy fuzzy based on fire-fly algorithm and particle filter[C]//Proc. of the 7th International Forum on Electrical Engineering and Automation, 2020: 937-942.
|
6 |
靳俊峰, 曾怡, 廖圣龙. 弹道导弹群目标多普勒速度估计算法[J]. 雷达与对抗, 2019, 39 (1): 30-33, 38.
|
|
JIN J F , ZENG Y , LIAO S L . Doppler velocity estimation algorithm for ballistic missile group targets[J]. Radar and Confrontation, 2019, 39 (1): 30-33, 38.
|
7 |
AN Q , YE C M , LU Y B , et al. A time-varying angle extraction method for refined proximity group targets tracking[J]. IET Signal Processing, 2023, 17 (4): e12213.
doi: 10.1049/sil2.12213
|
8 |
黄强, 俞建国, 时鹏飞. 基于自适应压缩感知的复杂弹道群目标跟踪技术[J]. 系统工程与电子技术, 2020, 42 (8): 1710- 1717.
|
|
HUANG Q , YU J G , SHI P F . Complex ballistic group targets tracking based on adaptive compressed sensing[J]. Systems Engineering and Electronics, 2020, 42 (8): 1710- 1717.
|
9 |
LIU F K , HUANG D R , GUO X R , et al. Unambiguous ISAR imaging method for complex maneuvering group targets[J]. Remote Sensing, 2022, 14 (11): 2554.
doi: 10.3390/rs14112554
|
10 |
HUANG D R , ZHANG L , XING M D , et al. Doppler ambiguity removal and ISAR imaging of group targets with sparse decomposition[J]. IET Radar, Sonar & Navigation, 2016, 10 (9): 1711- 1719.
|
11 |
JIN K , LI G Q , LAI T , et al. A novel long-time coherent integration algorithm for Doppler-ambiguous radar maneuvering target detection[J]. IEEE Sensors Journal, 2020, 20 (16): 9394- 9407.
doi: 10.1109/JSEN.2020.2988583
|
12 |
SUN Z , LI X L , CUI G L , et al. Hypersonic target detection and velocity estimation in coherent radar system based on scaled radon fourier transform[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (6): 6525- 6540.
doi: 10.1109/TVT.2020.2988990
|
13 |
ZHENG J B , ZHU K L , NIU Z Y , et al. Generalized Dechirp-Keystone transform for radar high-speed maneuvering target detection and localization[J]. Remote Sensing, 2021, 13 (17): 3367.
doi: 10.3390/rs13173367
|
14 |
FU M Z , SUN H X , DENG Z M , et al. A novel method for fast detection of high-speed targets[J]. Signal Processing, 2021, 182, 107938.
doi: 10.1016/j.sigpro.2020.107938
|
15 |
NIU Z Y , ZHENG J B , SU T , et al. Radar high-speed target detection based on improved minimalized windowed RFT[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 870- 886.
doi: 10.1109/JSTARS.2020.3037089
|
16 |
YU W C , SU W M , GU H , et al. Maneuvering target detection method based on Keystone transform and Radon local mapping sparse-modified LYU's distribution[J]. Signal, Image and Video Processing, 2023, 17 (6): 2771- 2778.
doi: 10.1007/s11760-023-02494-2
|
17 |
REN K , DU L , WANG B S , et al. Statistical compressive sensing and feature extraction of time-frequency spectrum from narrowband radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (1): 326- 342.
doi: 10.1109/TAES.2019.2914518
|
18 |
REN M Q, TIAN Y H. Radar signal cognition based time-frequency transform and high order spectra analysis[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017.
|
19 |
JIN K , LAI T , ZHU S L , et al. Coherent detection and parameter estimation for radar high-speed maneuvering target based on FAF-LVD[J]. Circuits, Systems, and Signal Processing, 2020, 39 (5): 2600- 2622.
doi: 10.1007/s00034-019-01280-1
|
20 |
CHEN X L , GUAN J , LIU N B , et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Trans.on Signal Processing, 2014, 62 (4): 939- 953.
doi: 10.1109/TSP.2013.2297682
|
21 |
CHEN X L , GUAN J , LIU N B , et al. Detection of a low observable sea-surface target with micromotion via the radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (7): 1225- 1229.
doi: 10.1109/LGRS.2013.2290024
|
22 |
TIAN M M , LIAO G S , ZHU S Q , et al. A novel method for high-speed maneuvering target detection and motion parameters estimation[J]. Multidimensional Systems and Signal Processing, 2020, 31 (4): 1625- 1647.
doi: 10.1007/s11045-020-00724-1
|
23 |
翟心蝶, 杨刚, 廉杰. 基于二阶Keystone的微弱运动目标检测[J]. 现代防御技术, 2021, 49 (3): 105- 114.
|
|
ZHAI X D , YANG G , LIAN J . Weak moving target detection based on second-order Keystone transform[J]. Modern Defence Technology, 2021, 49 (3): 105- 114.
|
24 |
ZHU S Q , LIAO G S , YANG D , et al. A new method for radar high-speed maneuvering weak target detection and imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (7): 1175- 1179.
doi: 10.1109/LGRS.2013.2283887
|
25 |
TIAN J , CUI W , SHEN Q , et al. High-speed maneuvering target detection approach based on joint RFT and Keystone transform[J]. Science China Information Sciences, 2013, 56 (6): 1- 13.
|
26 |
全英汇, 高霞, 沙明辉, 等. 基于Ransac算法的捷变频联合正交频分复用雷达高速多目标参数估计[J]. 电子与信息学报, 2021, 43 (7): 1970- 1977.
|
|
QUAN Y H , GAO X , SHA M H , et al. High speed multi-target parameter estimation for FA-OFDM radar based on Ransac algorithm[J]. Journal of Electronics and Information Technology, 2021, 43 (7): 1970- 1977.
|
27 |
全英汇, 高霞, 沙明辉, 等. 基于期望最大化算法的捷变频联合正交频分复用雷达高速多目标参数估计[J]. 电子与信息学报, 2020, 42 (7): 1611- 1618.
|
|
QUAN Y H , GAO X , SHA M H , et al. High speed multi-target parameter estimation for FA-OFDM radar based on expectation maximization algorithm[J]. Journal of Electronics and Information Technology, 2020, 42 (7): 1611- 1618.
|
28 |
ZHAO J , ZHANG M , WANG X , et al. Parameters estimation and ISAR imaging of multiple maneuvering targets based on an order reduction method for cubic chirps[J]. Journal of Electromagnetic Waves and Applications, 2017, 31 (16): 1658- 1675.
doi: 10.1080/09205071.2017.1359682
|
29 |
王勇, 姜义成. 基于自适应Chirplet分解的舰船目标ISAR成像[J]. 电子与信息学报, 2006, 28 (6): 982- 984.
|
|
WANG Y , JIANG Y C . The ISAR imaging of ships based on adaptive Chirplet decomposition[J]. Journal of Electronics and Information Technology, 2006, 28 (6): 982- 984.
|
30 |
LIU Y, WANG L, BI G A, et al. Novel ISAR range alignment via minimizing the entropy of the sum range profile[C]//Proc. of the 21st International Radar Symposium, 2020: 135-138.
|
31 |
陈学斌, 叶春茂, 张彦, 等. 基于相位分析与散射点关联的速度估计方法[J]. 系统工程与电子技术, 2021, 43 (12): 3429- 3438.
doi: 10.12305/j.issn.1001-506X.2021.12.03
|
|
CHEN X B , YE C M , ZHANG Y , et al. Velocity estimation method based on phase analysis and scatterers association[J]. Systems Engineering and Electronics, 2021, 43 (12): 3429- 3438.
doi: 10.12305/j.issn.1001-506X.2021.12.03
|