系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1833-1842.doi: 10.12305/j.issn.1001-506X.2025.06.12

• 传感器与信号处理 • 上一篇    下一篇

基于DBO-DAOD的未知雷达调制方式识别算法

张本辉1, 刘松涛2,*, 晁玉龙3   

  1. 1. 海军大连舰艇学院舰船指挥系, 辽宁 大连 116018
    2. 海军大连舰艇学院信息系统系, 辽宁 大连 116018
    3. 中国人民解放军92896部队, 辽宁 大连 116018
  • 收稿日期:2024-04-19 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 刘松涛
  • 作者简介:张本辉 (1988—), 男, 讲师, 博士, 主要研究方向为辐射源识别、电子战无人机作战
    刘松涛 (1978—), 男, 副教授, 博士, 主要研究方向为舰艇电子对抗
    晁玉龙 (1985—), 男, 助理工程师, 硕士, 主要研究方向为舰艇电子对抗

Unknown radar modulation mode recognition algorithm based on DBO-DAOD

Benhui ZHANG1, Songtao LIU2,*, Yulong CHAO3   

  1. 1. Department of Warship Command, Dalian Naval Academy, Dalian 116018, China
    2. Department of Information System, Dalian Naval Academy, Dalian 116018, China
    3. Unit 92896 of the PLA, Dalian 116018, China
  • Received:2024-04-19 Online:2025-06-25 Published:2025-07-09
  • Contact: Songtao LIU

摘要:

随着各种新型雷达的出现或战时预留模式的采用, 真实的战场电磁环境将越加复杂, 大概率会出现种类未知且参数突变的雷达调制信号, 对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理, 将开集差分分布对齐(distribution alignment with open set difference, DAOD)算法引入雷达调制方式识别领域, 设计具体应用的技术方案, 并针对DAOD算法所需参数依靠先验知识或者试探选取问题, 利用蜣螂优化(dung beetle optimizer, DBO)算法进行参数优化。仿真结果表明: 在单个雷达调制方式未知情形下, 精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下, Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比, 上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。

关键词: 开集差分分布对齐, 蜣螂优化算法, 未知调制方式识别, 影响机理

Abstract:

With the emergence of various new radars and the use of wartime reservation mode, the actual battlefield electromagnetic environment is becoming more and more complex. Radar modulation signals with unknown types and sudden changes in parameters likely appear, which bring great challenges to the existing modulation mode recognition algorithms. In this regard, the influence mechanism of radar modulation "unknown" on the recognition results is analyzed, and the distribution alignment with open set difference (DAOD) algorithm is introduced into the field of radar modulation mode recognition, and a specific application scheme is designed. The dung beetle optimizer (DBO) algorithm is used to optimize the parameters of DAOD algorithm to solve the problem of prior knowledge and heuristic selection needed by DAOD algorithm. The simulation results show that the Accuracy and F-measure can reach 91.34% and 95.11% in the case of single unknown radar modulation mode. The Accuracy and F-measure are 91.37% and 93.69% in the case of multiple unknown radar modulation mode. Compared with DAOD algorithm, the above results increase by 3.77%, 1.83%, 21.17% and 12.06%, respectively. Therefore, DBO-DAOD algorithm can effectively improve the recognition rate of unknown radar modulation modes.

Key words: distribution alignment with open set difference (DAOD), dung beetle optimizer (DBO) algorithm, unknown modulation mode recognition, influence mechanism

中图分类号: