系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 44-55.doi: 10.12305/j.issn.1001-506X.2026.01.05

• 电子技术 • 上一篇    下一篇

高海况下应用先验信息的海上小目标检测方法

丁昊1(), 韦继丰2, 董云龙1,*, 曹政1, 于恒力1   

  1. 1. 海军航空大学,山东 烟台 264001
    2. 哈尔滨工程大学烟台研究院,山东 烟台 264006
  • 收稿日期:2024-09-26 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 董云龙 E-mail:331299929@qq.com
  • 作者简介:丁 昊(1988—),男,副教授,博士,主要研究方向为海杂波特性认知与抑制、海杂波中目标检测
    韦继丰(1999—),男,博士研究生,主要研究方向为海上目标检测
    曹 政(1987—),男,讲师,博士,主要研究方向为海上目标识别和多特征融合检测
    于恒力(1993—),男,讲师,博士,主要研究方向为海上微弱目标检测
  • 基金资助:
    国家自然科学基金(62388102,62101583)资助课题

Method for detecting small targets using prior information under high sea states

Hao DING1(), Jifeng WEI2, Yunlong DONG1,*, Zheng CAO1, Hengli YU1   

  1. 1. Naval Aviation University,Yantai 264001,China
    2. Harbin Engineering University Yantai Research Institute,Yantai 264006,China
  • Received:2024-09-26 Online:2026-01-25 Published:2026-02-11
  • Contact: Yunlong DONG E-mail:331299929@qq.com

摘要:

在高海况、低信杂比条件下,受海尖峰影响,均值类恒虚警检验统计量常出现长拖尾分布,目标与杂波混叠严重,进而导致检测性能下降。为削弱海尖峰等异常样本影响,本文在考虑大尺度广域海面回波数据时序关联性的前提下,将数据信息的利用从单帧扩展到多帧,按照贝叶斯估计,从多帧数据中挖掘先验信息,并利用序贯估计方法形成贝叶斯检验统计量,与恒定虚警率下的最小值(smallest of constant false alarm rate, SO-CFAR)检测框架相结合,提出一种应用先验分布迭代感知信息的SO-CFAR检测方法。所提检测方法使用幂次变换加强原检验统计量的高斯性,在保证迭代稳定性的条件下,完成历史帧与当前帧的融合。2~5级海况实测数据对比分析结果表明,所提方法在高海况下相比原方法和现有多帧方法,目标检测概率均有明显提升,证实了所提方法在改善检测性能方面的优势。

关键词: 雷达, 目标检测, 先验信息, 贝叶斯估计

Abstract:

Under high sea state and low signal-to-clutter ratio (SCR), the presence of seaspikes often causes averaging constant false alarm rate (CFAR) test statistics to display long-tail distributions. This leads to significant overlap between targets and clutter, thereby reducing detection performance. To mitigate the impact of such anomalies as sea spikes, this paper takes into account the temporal correlation of large-scale wide-area sea surface echo data and extends the data utilization from single-frame to multi-frame analysis. By adopting a Bayesian estimation, we extract priori information from multiple frames and develop a Bayesian test statistic using a sequential estimation method. The proposed method integrates Bayesian test statistics into the smallest of constant false alarm rate (SO-CFAR) detection framework. The proposed detection method uses power transformation to enhance the Gaussian characteristics of the original test statistic, and accomplishes the fusion of historical and current frames while ensuring iterative stability. The comparative analysis of measured data at sea states 2-5 shows that the proposed method has significantly improved target detection probability compared to original method and multi-frame methods under high sea states, confirming the advantages of the proposed method in improving detection performance.

Key words: radar, target detection, priori information, Bayesian estimation

中图分类号: