1 |
BLAIR W D, RICE T R, MCDOLE B S, et al. Least-squares approach to asynchronous data fusion[C]//Proc. of the SPIE-Acquisition, Tracking, and Pointing VI, 1992, 1697: 130−141.
|
2 |
周锐, 申功勋, 房建成, 等. 多传感器融合目标跟踪[J]. 航空学报, 1998, 19 (5): 536- 540.
|
|
ZHOU R, SHEN G X, FANG J C, et al. Target tracking based on fusion of multi-sensor[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19 (5): 536- 540.
|
3 |
CASTELLANOS J A, NEIRA J, TARDÓS J D. Limits to the consistency of EKF-based SLAM[J]. IFAC Proceedings Volumes, 2004, 37 (8): 716- 721.
doi: 10.1016/S1474-6670(17)32063-3
|
4 |
谢泽峰, 高宏峰, 任亚飞. 基于UKF的雷达/红外分布式加权融合算法[J]. 导弹与航天运载技术, 2012, 34 (3): 59- 62.
|
|
XIE Z F, GAO H F, REN Y F. Radar/infrared radiation distributed weighted fusion algorithm based on the unscented Kalman filter[J]. Missiles and Space Vehicles, 2012, 34 (3): 59- 62.
|
5 |
JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000, 45 (3): 477- 482.
doi: 10.1109/9.847726
|
6 |
李珂, 李醒飞, 杨帆. IMM-UKF算法在两坐标雷达-光电融合跟踪系统中的改进与应用[J]. 激光与光电子学进展, 2016, 53 (12): 245- 254.
|
|
LI K, LI X F, YANG F. Improvement and application of IMM-UKF algorithm in two coordinate radar-optoelectronic fusion tracking system[J]. Laser & Optoelectronics Progress, 2016, 53 (12): 245- 254.
|
7 |
叶瑾, 许枫, 杨娟, 等. 一种基于多传感器的复合量测IMM-EKF数据融合算法[J]. 电子学报, 2020, 48 (12): 2326- 2330.
|
|
YE J, XU F, YANG J, et. al. A composite measurement IMM-EKF data fusion algorithm based on multi-sensor[J]. Acta Electronica Sinica, 2020, 48 (12): 2326- 2330.
|
8 |
唐志一, 蔡颖, 王会. 基于自适应加权算法的多传感器数据融合方法[J]. 智慧信息系统与技术, 2022, 13 (5): 66- 70.
|
|
TANG Z Y, CAI Y, WANG H. Multi-sensor data fusion method based on adaptive weighting algorithm[J]. Command Information System and Technology, 2022, 13 (5): 66- 70.
|
9 |
杨杰, 汪朝群, 陆正刚. 用于目标识别跟踪的雷达/红外成像双模传感器数据融合技术[J]. 航天控制, 1998, 16 (4): 18- 26.
|
|
YANG J, WANG C Q, LU Z G. Radar/Infrared imaging dual-sensor data fusion techniques for target tracking[J]. Aerospace Control, 1998, 16 (4): 18- 26.
|
10 |
SUBEDI S, ZHANG Y D, AMIN M G, et al. Group sparsity based multi-target tracking in passive multi-static radar systems using Doppler-only measurements[J]. IEEE Trans. on Signal Processing, 2016, 64 (14): 3619- 3634.
doi: 10.1109/TSP.2016.2552498
|
11 |
WANG J, ZENG Y J, WEI S M, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Trans. on Signal Processing, 2021, 69, 3337- 3350.
doi: 10.1109/TSP.2021.3084533
|
12 |
SUN W F, LI X T, PANG Z T, et al. Track-to-track association based on maximum likelihood estimation for T/R-R composite compact HFSWR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5102012.
|
13 |
VERDOLIVA L. Media forensics and deepfakes: an overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14 (5): 910- 932.
doi: 10.1109/JSTSP.2020.3002101
|
14 |
QIU S, ZHAO H K, JIANG N, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges[J]. Information Fusion, 2022, 80, 241- 265.
|
15 |
PAPI F, KIM D Y. A particle multi-target tracker for superpositional measurements using labeled random finite sets[J]. IEEE Trans. on Signal Processing, 2015, 63 (16): 4348- 4358.
doi: 10.1109/TSP.2015.2443727
|
16 |
SUN J, YI W, VARSHNEY P K, et al. Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection[J]. IEEE Trans. on Signal Processing, 2022, 70, 3878- 3893.
doi: 10.1109/TSP.2022.3191800
|
17 |
TOKTA A, HOCAOGLU A K. Sensor bias estimation for track-to-track association[J]. IEEE Signal Processing Letters, 2019, 26 (10): 1426- 1430.
doi: 10.1109/LSP.2019.2934596
|
18 |
杨春玲, 刘国岁, 倪晋麟. 基于转换坐标卡尔曼滤波算法的雷达目标跟踪[J]. 现代雷达, 1998, 20 (5): 48- 54.
|
|
YANG C L, LIU G S, NI J L. Converted measurement Kalman filtering algorithm for radar target tracking[J]. Modern Radar, 1998, 20 (5): 48- 54.
|
19 |
LI K Y, ZHOU G J. Maneuvering target state estimation in range-squared coordinate[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 60 (1): 574- 590.
|
20 |
WU W H, SUN H M, CAI Y C, et al. Tracking multiple maneuvering targets hidden in the DBZ based on the MM-GLMB filter[J]. IEEE Trans. on Signal Processing, 2020, 68, 2912- 2924.
doi: 10.1109/TSP.2020.2988635
|
21 |
YOU P J, DING Z G, QIAN L C, et al. A motion parameter estimation method for radar maneuvering target in Gaussian clutter[J]. IEEE Trans. on Signal Processing, 2019, 67 (20): 5433- 5446.
doi: 10.1109/TSP.2019.2939082
|
22 |
ZHOU G J, ZHU B, YE X P. Switch-constrained multiple-model algorithm for maneuvering target tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 4414- 4433.
doi: 10.1109/TAES.2023.3242944
|
23 |
ZHANG L, ZHANG J Z, NIU J, et al. Track prediction for HF radar vessels submerged in strong clutter based on MSCNN fusion with GRU-AM and AR model[J]. Remote Sensing, 2021, 13 (11): 2164.
doi: 10.3390/rs13112164
|
24 |
XIONG W, XU P L, CUI Y Q, et al. Track segment association with dual contrast neural network[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (1): 247- 261.
|
25 |
SUN W F, PANG Z Z, HUANG W M, et al. A multi-stage vessel tracklet association method for compact high-frequency surface wave radar[J]. Remote Sensing, 2022, 14 (7): 1601.
doi: 10.3390/rs14071601
|
26 |
SOATTI G, NICOLI M, GARCIA N, et al. Implicit cooperative positioning in vehicular networks[J]. IEEE Trans. on Intelligent Transportation Systems, 2018, 19 (12): 3964- 3980.
doi: 10.1109/TITS.2018.2794405
|
27 |
SARKKA S, SARMAVUORI J. Gaussian filtering and smoothing for continuous-discrete dynamic systems[J]. Signal Processing, 2013, 93 (2): 500- 510.
doi: 10.1016/j.sigpro.2012.09.002
|
28 |
YAN J K, JIAO H, PU W Q, et al. Radar sensor network resource allocation for fused target tracking: a brief review[J]. Information Fusion, 2022, 86−87, 104- 115.
doi: 10.1016/j.inffus.2022.06.009
|
29 |
SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans. on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469
|
30 |
RAGHU J, SRIHARI P, THARMARASA R, et al. Comprehensive track segment association for improved track continuity[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (5): 2463- 2480.
doi: 10.1109/TAES.2018.2820364
|