1 |
DU L, WANG Z C, WANG Y, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9 (1): 34- 54.
|
2 |
NOVAK L M, OWIRKA G J, BROWER W S. Performance of 10-and 20-target MSE classifiers[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (4): 1279- 1289.
doi: 10.1109/7.892675
|
3 |
唐宁, 高勋章, 黎湘. 基于几何散列法的ISAR像自动目标识别[J]. 系统工程与电子技术, 2012, 34 (4): 692- 697.
doi: 10.3969/j.issn.1001-506X.2012.04.10
|
|
TANG N, GAO X Z, LI X. Automatic target recognition of ISAR images based on geometric hash[J]. Journal of Systems Engineering and Electronics, 2012, 34 (4): 692- 697.
doi: 10.3969/j.issn.1001-506X.2012.04.10
|
4 |
张新征, 黄培康. 基于贝叶斯压缩感知的SAR目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07
|
|
ZHANG X Z, HUANG P K. SAR ATR based on Bayesian compressive sensing[J]. Journal of Systems Engineering and Electronics, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07
|
5 |
MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]//Proc. of the SPIE-Algorithms for Synthetic Aperture Radar Imagery XXII, 2015.
|
6 |
DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (3): 364- 368.
|
7 |
CHEN S Z, WANG H P. SAR target recognition based on deep learning[C]//Proc. of the International Conference on Data Science and Advanced Analytics, 2014: 541−547.
|
8 |
王彩云, 吴钇达, 王佳宁, 等. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44 (8): 2483- 2487.
doi: 10.12305/j.issn.1001-506X.2022.08.12
|
|
WANG C Y, WU Y D, WANG J N, et al. SAR target recognition based on improved CNN and data augmentation[J]. Systems Engineering and Electronics, 2022, 44 (8): 2483- 2487.
doi: 10.12305/j.issn.1001-506X.2022.08.12
|
9 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
10 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|
11 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-06-16]. https://arxiv.org/pdf/1409.1556.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on computer Vision and Pattern Recognition. 2016: 770−778.
|
13 |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492−1500.
|
14 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
15 |
邵嘉琦, 曲长文, 李健伟. 卷积神经网络对SAR目标识别性能分析[J]. 雷达科学与技术, 2018, 16 (5): 525- 532.
doi: 10.3969/j.issn.1672-2337.2018.05.010
|
|
SHAO J Q, QU C W, LI J W. Performance analysis of convolutional neural networks for SAR target recognition[J]. Radar Science and Technology, 2018, 16 (5): 525- 532.
doi: 10.3969/j.issn.1672-2337.2018.05.010
|
16 |
CHEN S Z, WANG H P, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (8): 4806- 4817.
doi: 10.1109/TGRS.2016.2551720
|
17 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8 (3): 331- 368.
doi: 10.1007/s41095-022-0271-y
|
18 |
TANG T, CUI Y T, FENG R, et al. Vehicle target recognition in SAR images with complex scenes based on mixed attention mechanism[J]. Information, 2024, 15 (3): 159- 161.
doi: 10.3390/info15030159
|
19 |
HUANG Z C, SHI M Y, CHEN Y R, et al. A self-attention armed lightweight optronic convolutional neural network for SAR target recognition[C]//Proc. of the IET International Radar Conference Proceedings, 2023.
|
20 |
LANG P, FU X J, FENG C, et al. LW-CMDANet: a novel attention network for SAR automatic target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6615- 6630.
doi: 10.1109/JSTARS.2022.3195074
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 178.
|
22 |
WU C, HE T Q. A Survey of Applications of Vision Transformer and its Variants[C]//Proc. of the 10th IEEE International Conference on Intelligent Data and Security, 2024: 21−25.
|
23 |
MIA M S, ARNOB A B H, NAIM A, et al. ViTs are everywhere: a comprehensive study showcasing vision transformers in different domain[C]//Proc. of the International Conference on the Cognitive Computing and Complex Data, 2023: 101−117.
|
24 |
LV P Y, WU W J, ZHONG Y F, et al. Review of vision transformer models for remote sensing image scene classification[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 2231−2234.
|
25 |
HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 45 (1): 87- 110.
|
26 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012−10022.
|
27 |
王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043
|
|
WANG Z R, KANG Y Z, ZENG X, et al. SAR-AIRcraft-1.0: a high-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043
|
28 |
PARK J, WOO S, LEE J Y, et al. Bam: Bottleneck attention module[EB/OL]. [2024-06-16]. https://arxiv.org/abs/1807.06514.
|
29 |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3−19.
|
30 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015.
|
31 |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proc. of the 27th International Conference on Machine Learning, 2010: 807−814.
|