系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2853-2861.doi: 10.12305/j.issn.1001-506X.2025.09.08

• 传感器与信号处理 • 上一篇    

面向轻量级交叉注意力卷积网络的SAR目标识别

蒋明煜(), 张顺生(), 肖思瑶()   

  1. 电子科技大学电子科学技术研究院,四川 成都 611731
  • 收稿日期:2024-07-16 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 蒋明煜 E-mail:jmyob0808@yeah.net;zhangss@uestc.edu.cn;202222230113@std.uestc.edu.cn
  • 作者简介:张顺生(1980—),男,研究员,博士,主要研究方向为雷达探测与成像识别、智能感知与信息系统、信号与信息智能处理
    肖思瑶(2000—),男,硕士研究生,主要研究方向为图像去噪、目标检测与识别

SAR target recognition based on lightweight cross-attention convolutional neural network

Mingyu JIANG(), Shunsheng ZHANG(), Siyao XIAO()   

  1. Research Institute of Electronic Science and Technology,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2024-07-16 Online:2025-09-25 Published:2025-09-16
  • Contact: Mingyu JIANG E-mail:jmyob0808@yeah.net;zhangss@uestc.edu.cn;202222230113@std.uestc.edu.cn

摘要:

针对合成孔径雷达(synthetic aperture radar, SAR)飞机目标识别网络消耗部署资源大的问题,提出一种基于轻量级交叉注意力卷积神经网络(lightweight cross-attention convolutional neural network, LCA-CNN)的SAR飞机目标识别方法。一方面,通过交叉注意力机制对目标进行特征提取,使得网络能够更高效地从样本中学习到关键的分类表征,提升飞机细粒度识别的准确率。另一方面,只利用卷积层和注意力模块,从而大幅降低网络的整体参数量。在SAR-AIRcraft-1.0数据集上的对比实验表明:与其他经典的深度学习SAR图像识别算法方法相比,所提方法在更少参数条件下可实现更高的平均识别准确率。

关键词: 合成孔径雷达, 雷达目标识别, 卷积神经网络, 交叉注意力机制

Abstract:

To address the issue of high computational resource consumption for synthetic aperture radar (SAR) aircraft target recognition network, a SAR aircraft target recognition method based on lightweight cross-attention convolutional neural network (LCA-CNN) is proposed. On one hand, the cross-attention mechanism is utilized to extract features of target, enabling the network to learn key classification representations efficiently from samples, thereby improving the accuracy of fine-grained aircraft recognition. On the other hand, the use of only convolutional layers and attention modules significantly reduces the overall number of network parameters. Comparative experiments on the SAR-AIRcraft-1.0 dataset with classical deep learning SAR image recognition algorithms demonstrate that the proposed method achieves higher average recognition accuracy with fewer parameters.

Key words: synthetic aperture radar (SAR), radar target recognition, convolutional neural network (CNN), cross attention mechanism

中图分类号: