1 |
Ericsson. Ericsson mobility report June 2024[R]. Stockholm: Ericsson, 2024.
|
2 |
Huawei. Communications networks 2030[R]. China: Huawei, 2024.
|
3 |
JIANG W W . Cellular traffic prediction with machine learning: a survey[J]. Expert Systems with Applications, 2022, 201, 117163.
|
4 |
YULE G U . Ⅶ. On a method of investigating periodicities disturbed series, with special reference to Wolfer's sunspot numbers[J]. Philosophical Transactions of the Royal Society A, 1927, 226 (636/646): 267- 298.
|
5 |
TIAN M , SUN C , WU S Z . An EMD and ARMA-based network traffic prediction approach in SDN-based internet of vehicles[J]. Wireless Networks, 2021,
doi: 10.1007/s11276-021-02675-2
|
6 |
XU F L , LIN Y Y , HUANG J X , et al. Big data driven mobile traffic understanding and forecasting: a time series approach[J]. IEEE Trans.on Services Computing, 2016, 9 (5): 796- 805.
|
7 |
WANG J. A process level network traffic prediction algorithm based on ARIMA model in smart substation[C]//Proc. of the IEEE International Conference on Signal Processing, Communication and Computing, 2013.
|
8 |
MEHDIZADEH S , FATHIAN F , ADAMOWSKI J F . Hybrid artificial intelligence-time series models for monthly streamflow modeling[J]. Applied Soft Computing, 2019, 80, 873- 887.
|
9 |
韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43 (10): 2902- 2910.
doi: 10.12305/j.issn.1001-506X.2021.10.25
|
|
HAN C , XIONG W . Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer[J]. Systems Engineering and Electronics, 2021, 43 (10): 2902- 2910.
doi: 10.12305/j.issn.1001-506X.2021.10.25
|
10 |
陈静, 张昭冲, 王琳凯, 等. 基于卷积长短时记忆网络的短时公交客流量预测[J]. 系统仿真学报, 2024, 36 (2): 476- 486.
|
|
CHEN J , ZHANG Z C , WANG L K , et al. Short-term bus passenger flow prediction based on convolutional long-short-term memory network[J]. Journal of System Simulation, 2024, 36 (2): 476- 486.
|
11 |
NIE L S, JIANG D D, YU S, et al. Network traffic prediction based on deep belief network in wireless mesh backbone networks[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2017.
|
12 |
ZHANG C T , ZHANG H X , YUAN D F , et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (8): 1656- 1659.
|
13 |
ZHANG C Y, PATRAS P. Long-term mobile traffic forecasting using deep spatio-temporal neural networks[C]//Proc. of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2018: 231-240.
|
14 |
XU Y , YIN F , XU W J , et al. Wireless traffic prediction with scalable Gaussian process: framework, algorithms, and verification[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (6): 1291- 1306.
|
15 |
闫啸家, 梁伟阁, 张钢, 等. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45 (3): 931- 940.
doi: 10.12305/j.issn.1001-506X.2023.03.35
|
|
YAN X J , LIANG W G , ZHANG G , et al. Prediction method for mechanical equipment based on RCNN-ABiLSTM[J]. Systems Engineering and Electronics, 2023, 45 (3): 931- 940.
doi: 10.12305/j.issn.1001-506X.2023.03.35
|
16 |
AGARAP A F M. A neural network architecture combining gated recurrent unit (GRU) and support vector machine (SVM) for intrusion detection in network traffic data[C]//Proc. of the 10th International Conference on Machine Learning and Computing, 2018: 26-30.
|
17 |
HUANG C W, CHIANG C T, LI Q H. A study of deep learning networks on mobile traffic forecasting[C]//Proc. of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, 2017.
|
18 |
BI J , ZHANG X , YUAN H T , et al. A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM[J]. IEEE Trans.on Automation Science and Engineering, 2021, 19 (3): 1869- 1879.
|
19 |
WANG D , BAO Y Y , WANG C M . A hybrid deep learning method based on CEEMDAN and attention mechanism for network traffic prediction[J]. IEEE Access, 2023, 11, 39651- 39663.
|
20 |
时维国, 国明. 基于MEEMD-PE与CS-WNN模型的网络时延预测[J]. 系统工程与电子技术, 2020, 42 (1): 184- 190.
doi: 10.3969/j.issn.1001-506X.2020.01.25
|
|
SHI W G , GUO M . Network delay prediction based on model of modified ensemble empirical mode decomposition-permutation entropy and cuckoo search-wavelet neural network[J]. Systems Engineering and Electronics, 2020, 42 (1): 184- 190.
doi: 10.3969/j.issn.1001-506X.2020.01.25
|
21 |
薛锡瑞, 黄树彩, 韦道知, 等. 基于EMD-DESN的无人机集群航迹目的地预测[J]. 系统工程与电子技术, 2023, 46 (1): 290- 299.
doi: 10.12305/j.issn.1001-506X.2024.01.33
|
|
XUE X R , HUANG S C , WEI D Z , et al. Destination prediction of UAV cluster trajectory based on EMD-DESN[J]. Systems Engineering and Electronics, 2023, 46 (1): 290- 299.
doi: 10.12305/j.issn.1001-506X.2024.01.33
|
22 |
CHANG T J , LEE T S , YANG C T , et al. A ternary-frequency cryptocurrency price prediction scheme by ensemble of clustering and reconstructing intrinsic mode functions based on CEEMDAN[J]. Expert Systems with Applications, 2023, 233, 121008.
|
23 |
WANG J Y , DAI B L , ZHANG T H , et al. A novel hybrid model of CEEMDAN-CNN-SAGU for Shanghai copper price prediction[J]. IEEE Access, 2024, 12, 25176- 25187.
|
24 |
ZHOU F T , HUANG Z H , ZHANG C H . Carbon price forecasting based on CEEMDAN and LSTM[J]. Applied Energy, 2022, 311, 118601.
|
25 |
吴宗收, 汪立新, 沈强, 等. 基于CEEMD半球谐振陀螺输出预测方法[J]. 系统工程与电子技术, 2023, 45 (10): 3259- 3264.
doi: 10.12305/j.issn.1001-506X.2023.10.30
|
|
WU Z S , WANG L X , SHEN Q , et al. Output prediction method of hemispherical resonator gyro based on CEEMD[J]. Systems Engineering and Electronics, 2023, 45 (10): 3259- 3264.
doi: 10.12305/j.issn.1001-506X.2023.10.30
|
26 |
CHEN L Y , LIU X , ZENG C , et al. Temperature prediction of seasonal frozen subgrades based on CEEMDAN-LSTM hybrid model[J]. Sensors, 2022, 22 (15): 5742.
|
27 |
韩莹, 王乐豪, 王淑梅, 等. 宽度-深度融合时频分析的径流智能预测方法[J]. 系统仿真学报, 2024, 36 (2): 363- 372.
|
|
HAN Y , WANG L H , WANG S M , et al. Runoff intelligent prediction method based on broad-deep fusion time-frequency analysis[J]. Journal of System Simulation, 2024, 36 (2): 363- 372.
|
28 |
WOO S H, PARK J C, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|
29 |
PAPARRIZOS J, GRAVANO L. K-shape: efficient and accur ate clustering of time series[C]//Proc. of the ACM SIGMOD International Conference on Management of Data, 2015: 1855-1870.
|
30 |
DRAGOMIRETSKIY K , ZOSSO D . Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2013, 62 (3): 531- 544.
|
31 |
GUO D , XIA X W , ZHU L , et al. Dynamic modification neural network model for short-term traffic prediction[J]. Procedia Computer Science, 2021, 187, 134- 139.
|