系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1687-1697.doi: 10.12305/j.issn.1001-506X.2025.05.31

• 通信与网络 • 上一篇    

基于二次分解的混合神经网络蜂窝流量预测

段阿敏, 张朝辉   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 收稿日期:2024-04-12 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 张朝辉
  • 作者简介:段阿敏(1999—), 女, 硕士研究生, 主要研究方向为网络流量预测
    张朝辉(1987—), 男, 副教授, 硕士研究生导师, 博士, 主要研究方向为网络拓扑优化、流量预测
  • 基金资助:
    国家自然科学基金青年基金(62202351);中央高校基本科研业务费(ZYTS24075)

Quadratic decomposition-based cellular traffic prediction with hybrid neural network

Amin DUAN, Zhaohui ZHANG   

  1. School of Mathematics and Statistics, Xidian University, Xi'an 710126, China
  • Received:2024-04-12 Online:2025-06-11 Published:2025-06-18
  • Contact: Zhaohui ZHANG

摘要:

在移动通信网络快速发展的背景下, 蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点, 提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先, 采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)方法将原始流量分解为多个子序列, 利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构, 运用变分模态分解(variational mode decomposition, VMD)方法对频率序列进行二次分解, 生成多维频率序列。然后, 将一维趋势序列和多维频率序列分别输入至局部特征提取模块, 其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network, 1DCNN)提取一维趋势序列的局部特征, 而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module, CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中, 利用双向长短时记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制学习时序变化规律, 完成预测流量的输出。最后, 通过对趋势序列和频率序列的预测结果求和, 实现对蜂窝流量的准确预测。为了验证所提方法的有效性, 利用公开数据集进行实验验证, 并与多种不同方法进行对比。实验结果表明, 所提预测方法展现出更优的预测性能, 为蜂窝网络的智能管理和优化提供了有力支持。

关键词: 蜂窝流量预测, 模态分解, 卷积神经网络, 双向长短时记忆网络, 卷积块注意力模块

Abstract:

In the context of the rapid development of mobile communication networks, cellular traffic prediction plays an important role in network planning, optimization and resource management. Taking the complexity and nonlinear characteristics of cellular traffic data into account, a hybrid neural network cellular traffic prediction method based on quadratic decomposition is proposed. The complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method is first used to decompose the original traffic into multiple subsequences, and reconstruct them into frequency and trend sequences by using the K-Shape clustering algorithm. To reveal the underlying structure of data in more detail, the variational mode decomposition (VMD) method is used to perform secondary decomposition on the frequency sequence and generate multi-dimensional frequency sequences. Subsequently, the one-dimensional trend sequence and multi-dimensional frequency sequence are separately input into the local feature extraction module. The single-channel feature extraction layer uses the one-dimensional convolution neural network (1DCNN) method to extract local features of the one-dimensional trend sequence, while the multi-channel feature extraction layer combines the convolutional block attention module (CBAM) method to capture key information in the multi-dimensional frequency sequence. Then we input the extracted feature vectors into the temporal information learning module, and use the bidirectional long short term memory (BiLSTM) model and attention mechanism to complete the output prediction. Finally, we achieve accurate prediction of cellular traffic by summing the predicted results of frequency and trend sequences. To verify the effectiveness of the proposed method, this paper conducts experimental verification by using publicly available datasets and compares the predicted results with various methods. The experimental results show that the proposed method exhibits better predictive performance, which can provide strong support for the management and optimization of cellular networks.

Key words: cellular traffic prediction, modal decomposition, convolutional neural network (CNN), bidirectional long short term memory (BiLSTM) network, convolutional block attention module (CBAM)

中图分类号: