系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4054-4061.doi: 10.12305/j.issn.1001-506X.2024.12.14

• 传感器与信号处理 • 上一篇    

改进CEEMDAN结合新型小波变换的激光雷达去噪算法

冯帅1,*, 曹茹茹2, 马愈昭2, 丁超2   

  1. 1. 中国民航大学工程技术训练中心, 天津 300300
    2. 中国民航大学天津市智能信号与图像处理重点实验室, 天津 300300
  • 收稿日期:2023-09-25 出版日期:2024-11-25 发布日期:2024-12-30
  • 通讯作者: 冯帅
  • 作者简介:冯帅(1983—), 男, 副教授, 硕士, 主要研究方向为激光雷达气象探测、信号处理
    曹茹茹(1996—), 女, 硕士研究生, 主要研究方向为激光雷达气象探测
    马愈昭(1978—), 女, 教授, 博士, 主要研究方向为大气光学、光通信
    丁超(2000—), 男, 硕士研究生, 主要研究方向为激光雷达气象探测
  • 基金资助:
    中央高校基本科研业务费项目中国民航大学专项(3122019068)

Lidar denoising algorithm of improved CEEMDAN combined with novel wavelet change

Shuai FENG1,*, Ruru CAO2, Yuzhao MA2, Chao DING2   

  1. 1. Engineering Techniques Training Center, Civil Aviation University of China, Tianjin 300300, China
    2. Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-09-25 Online:2024-11-25 Published:2024-12-30
  • Contact: Shuai FENG

摘要:

针对激光雷达远距离探测时回波信号背景噪声大问题, 将自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)、去趋势波动分析(detrended fluctuation analysis, DFA)和新型小波变换相结合, 提出一种激光雷达去噪算法。首先, 激光雷达回波信号通过CEEMDAN进行分解, 获得多个本征模态函数(intrinsic mode function, IMF)。其次, 引入DFA算法计算各IMF分量与原始回波信号的标度指数, 自适应地将IMF分量划分为信息主导分量和噪声主导分量。再次, 采用新型小波变换对噪声主导分量进行去噪处理。最后, 将信息主导分量和去噪后的噪声主导分量进行信号合并重建。激光雷达仿真信号在-10 dB的去噪结果表明, 与改进的CEEMDAN结合小波软硬阈值相比, 所提算法的均方根误差分别降低了52.13%和96.49%, 信噪比分别提高了3.932 3 dB和3.754 2 dB。实测信号的去噪结果也表明, 所提算法在低信噪比条件下稳健性好且去噪性能更佳。

关键词: 激光雷达, 去噪, 自适应噪声完备集合经验模态分解, 小波阈值函数

Abstract:

In order to solve the problem of high background noise of the return signals in the long-distance detection of lidar, a lidar denoising algorithm is proposed by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), detrended fluctuation analysis (DFA) and novel wavelet transform. Firstly, the lidar return signal is decomposed by CEEMDAN to obtain multiple intrinsic mode function (IMF). Secondly, the DFA algorithm is introduced to calculate the scaling exponent of each IMF component with respect to the original return signal, adaptively divide the IMF components into signal-dominant components and noise-dominant components. Thirdly, the novel wavelet transform is used to denoise the noise-dominant components. Finally, the signal-dominant components are combined with the denoised noise-dominant components for signal reconstruction. The denoising results of the lidar simulation signal at -10 dB show that compared with the improved CEEMDAN combined with wavelet soft and hard thresholds, the root mean square error of the proposed algorithm has decreased by 52.13% and 96.49% respectively, and the signal to noise ratio has increased by 3.932 3 dB and 3.754 2 dB respectively. The denoising results of the measured signal also indicate that the proposed algorithm has good robustness and better denoising performance under low signal to noise ratio conditions.

Key words: lidar, denoising, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), wavelet threshold function

中图分类号: