系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 94-105.doi: 10.12305/j.issn.1001-506X.2026.01.10

• 传感器与信号处理 • 上一篇    下一篇

合成孔径雷达图像去噪算法研究进展

陈海青(), 汪刘应(), 刘顾, 王龙, 葛超群, 陈孟州   

  1. 火箭军工程大学智剑实验室,陕西 西安 710025
  • 收稿日期:2024-06-03 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 汪刘应 E-mail:411674446@qq.com;wangliuying1971@163.com
  • 作者简介:陈海青(1988—),男,博士研究生,主要研究方向为合成孔径雷达信号与图像处理
    刘 顾(1982—),男,副教授,博士,主要研究方向为目标特性评估与控制技术、隐身技术
    王 龙(1989—),男,副教授,博士,主要研究方向为目标特性评估与控制技术、隐身技术
    葛超群(1987—),男,讲师,博士,主要研究方向为目标特性评估与控制技术、隐身技术
    陈孟州(1995—),男,博士研究生,主要研究方向为隐身技术
  • 基金资助:
    陕西省“特支计划”(陕组通字(2020)44号);中国博士后科学基金(2022M723884);陕西省自然科学基础研究计划(2022JQ-356)资助课题

Research progress on denoising algorithms for synthetic aperture radar images

Haiqing CHEN(), Liuying WANG(), Gu LIU, Long WANG, Chaoqun GE, Mengzhou CHEN   

  1. Zhi Jian Laboratory,Rocket Force University of Engineering,Xi’an 710025,China
  • Received:2024-06-03 Online:2026-01-25 Published:2026-02-11
  • Contact: Liuying WANG E-mail:411674446@qq.com;wangliuying1971@163.com

摘要:

合成孔径雷达(synthetic aperture radar, SAR)成像过程中相干斑噪声的影响显著降低图像的质量和准确性,给图像的后续解译带来挑战。简要概述SAR图像相干斑的形成机理,列举常用SAR数据集及在相干斑噪声建模中的应用,比较传统去噪算法和基于深度学习的去噪算法的研究进展。在总结国内外学者研究的基础上,介绍空域滤波、非局部均值和变换域滤波等传统去噪方法的原理及优缺点,分析这些方法在保留图像细节与抑制噪声方面的局限性。概括包括卷积神经网络、生成对抗网络等在内的深度学习去噪算法的最新发展,探讨不同模型的优势与改进策略。最后,通过实验对比分析各算法的性能和不足,探讨当前SAR图像去噪面临的挑战及未来的发展趋势。

关键词: 合成孔径雷达, 图像去噪, 相干斑抑制, 人工智能, 深度学习

Abstract:

The imaging process of synthetic aperture radar (SAR) is significantly affected by speckle noise, which degrades the quality and accuracy of the images, posing challenges for subsequent image interpretation. This paper briefly summarizes the formation mechanism of SAR image speckle and compares the research progress of traditional denoising algorithms with deep learning-based denoising algorithms. Firstly, it introduces the principles and advantages/disadvantages of traditional denoising methods such as spatial filtering, non-local means, and transform domain filtering, analyzing their limitations in preserving image details and suppressing noise to clarify their application constraints. Subsequently, it summarizes the latest developments of deep learning denoising algorithms, including convolutional neural networks (CNN) and generative adversarial networks (GAN), discussing the advantages and improvement strategies of different models. Finally, through experimental comparisons, it analyzes the performance and shortcomings of each algorithm, exploring the challenges faced by current SAR image denoising and future development trends.

Key words: synthetic aperture radar, image denoising, coherent speckle suppression, artificial intelligence, deep learning

中图分类号: