系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2639-2645.doi: 10.12305/j.issn.1001-506X.2025.08.21

• 系统工程 • 上一篇    

地表未爆子弹药快速检测系统设计与实现

闫小伟(), 凌冲, 石胜斌   

  1. 陆军炮兵防空兵学院高过载弹药制导控制与信息感知实验室,安徽 合肥 230031
  • 收稿日期:2024-01-18 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 凌冲 E-mail:425006402@qq.com
  • 作者简介:闫小伟(1991—),男,助教,硕士,主要研究方向为目标探测与毁伤评估技术
    石胜斌(1994—),男,讲师,硕士,主要研究方向为智能弹药技术

Design and implementation of a rapid detection system for surface unexploded submunitions

Xiaowei YAN(), Chong LING, Shengbin SHI   

  1. Laboratory of Guidance Control and Information Perception Technology of High Overload Projectiles,PLA Army Academy of Artillery and Air Defense,Hefei 230031, China
  • Received:2024-01-18 Online:2025-08-25 Published:2025-09-04
  • Contact: Chong LING E-mail:425006402@qq.com
  • Supported by:
    Laboratory of Guidance Control and Information Perception Technology of High Overload Projectiles,PLA Army Academy of Artillery and Air Defense,Hefei Anhui 230031, China)

摘要:

随着无人智能与深度学习技术的快速发展,传统人工检测方式在地表未爆子弹药检测中显得日益低效和受限。针对地面检测速度慢、空基检测误差大等问题,提出一种基于无人机载平台的快速检测系统。系统采用多模成像探测、人工智能目标检测、无人负载巡检的方式,通过无人机载成像探测平台、二维地图快速检测和地面站三个子系统协同工作,实现对地表未爆子弹药的全天时高效检测。实验结果表明,系统在检测速度、精度及环境适应性方面较其他传统检测方法提升效果显著,且无需人工近距离接触,能够有效降低安全风险,为地表未爆子弹药检测提供了一种新的解决方案。

关键词: 地表未爆子弹药, 无人机, 深度学习, 快速检测, 二维地图重建

Abstract:

With the rapid development of unmanned intelligence and deep learning technology, the traditional manual detection method has become increasingly inefficient and limited in the detection of surface unexploded substitutions. In response to the problems of slow ground detection speed and large errors in aerial detection, this paper proposes a rapid detection system based on an unmanned aerial vehicle (UAV) platform. The system adopts a multi-mode imaging detection, artificial intelligence target detection, and unmanned load inspection approach. Through the collaborative work of three subsystems: the UAV-mounted imaging detection platform, the two-dimensional map rapid detection system, and the ground station, it achieves all-day efficient detection of surface unexploded submunitions. Experimental results show that the system significantly improves detection speed, accuracy, and environmental adaptability compared to other traditional detection methods. Moreover, it does not require manual close contact, effectively reducing safety risks, and provides a new solution for the detection of surface unexploded submunitions.

Key words: surface unexploded submunition, unmanned aerial vehicle (UAV), deep learning, rapid detection, two-dimensional map reconstruction

中图分类号: