系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2622-2631.doi: 10.12305/j.issn.1001-506X.2025.08.19

• 系统工程 • 上一篇    

考虑异巢起降的无人机山地巡检覆盖路径规划

羊钊(), 胡锦标, 王艳, 齐洪彪   

  1. 南京航空航天大学通用航空与飞行学院,江苏 溧阳 213300
  • 收稿日期:2024-05-28 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 羊钊 E-mail:yangzhao@nuaa.edu.cn
  • 作者简介:胡锦标(2001—),男,硕士研究生,主要研究方向为无人机路径规划
    王 艳(2000—),女,硕士研究生,主要研究方向为低空态势感知
    齐洪彪(2001—),男,硕士研究生,主要研究方向为无人机路径规划
  • 基金资助:
    国家自然科学基金(52172328);工信部专项基金(TC220A04A-79);南京航空航天大学科研与实践创新计划(xcxjh20232001)资助课题

UAV coverage path planning for mountain patrol considering different takeoff and landing nests

Zhao YANG(), Jinbiao HU, Yan WANG, Hongbiao QI   

  1. College of General Aviation and Flight,Nanjing University of Aeronautics and Astronautics,Liyang 213300 China
  • Received:2024-05-28 Online:2025-08-25 Published:2025-09-04
  • Contact: Zhao YANG E-mail:yangzhao@nuaa.edu.cn

摘要:

为解决山地区域的防火巡检问题,提出基于异巢起降运行模式的多无人机覆盖路径规划模型。首先,提出山地区域的空中覆盖视觉航路点生成方法,建立风影响下的无人机能量消耗模型,其次,提出异巢起降的运行模式,以总能耗最小、总转弯角最小和单无人机最大能耗最小作为优化目标,建立多无人机覆盖路径规划模型,最后,提出两阶段求解算法,一阶段将航路点的遍历问题建模为旅行商问题生成总能耗与总转弯角较小的回路,二阶段计算机巢的最优插入位置以实现单无人机最大能耗最小化。对比实验表明,所提出的算法在3个目标上相比于牛耕法路径均取得一定提升。所提算法能够兼顾总能耗、总转弯角与单无人机最大能耗规划多无人机覆盖路径。

关键词: 多无人机, 覆盖路径规划, 三维路径规划, 异巢起降, 多目标优化

Abstract:

To address the issue of efficient patrol in mountainous areas, a multi-unmanned aerial vehicle (UAV) coverage path planning model based on different takeoff and landing nests operation mode is proposed. Firstly, the method of generating the aerial coverage visual route points in the mountain area is proposed, and the UAV energy consumption model under the influence of wind is established. Secondly, different takeoff and landing nests operation mode is proposed, with the overall minimum, total turn angle minimum and single drone maximum energy consumption minimum as the optimization target, multi-UAV coverage path planning model is established. Finally, a two stage solution algorithm is proposed, the first stage waypoint traversal problem modeling for traveler salesman problem problem calculation total energy consumption and total turn angle smaller loop, the second stage computes nest the optimal insertion position to deal with single UAV maximum energy consumption minimum target. The comparative experiment show that the proposed algorithm has achieved some improvement compared with the Boustrophedon method in the three targets.The proposed algorithm can balance total energy consumption, total turning angle, and maximum energy consumption of a single UAV in planning multiple drone coverage paths.

Key words: multi-unmanned aerial vehicle (UAV), coverage path planning, three-dimensional path planning, different takeoff and landing nests, multi objective optimization

中图分类号: