1 |
TSUZUKI R . Development of automation and artifici al intelligence technology for welding and inspection process in aircraft industry[J]. Welding in the World, 2022, 66 (1): 105- 116.
doi: 10.1007/s40194-021-01210-3
|
2 |
KATUNIN A , DRAGAN K . Qualitative to quantitative non-destructive evaluation: a concept for D-sight inspections of aircraft structures[J]. Applied Mechanics and Materials, 2022, 909, 69- 74.
doi: 10.4028/p-d8r1x7
|
3 |
MENG D , BOER W U , JUAN X U , et al. Visual inspection of aircraft skin: automated pixel-level defect detection by instance segmentation[J]. Chinese Journal of Aeronautics, 2022, 35 (10): 254- 264.
doi: 10.1016/j.cja.2022.05.002
|
4 |
XU Y P, TANG J J, ZHOU J, et al. Intelligent itinerant inspection technology of aircraft based on deep learning and AR[C]//Proc. of the 5th World Conference on Mechanical Engineering and Intelligent Manufacturing, 2022: 1023-1027.
|
5 |
LIU Y P , DONG J X , LI Y D , et al. A UAV-based aircraft surface de fect inspection system via external constraints and deep learning[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 1- 15.
|
6 |
DEANE S , AVDELIDIS N P , IBARRA-CASTANEDO C , et al. Development of a thermal excitation source used in an active thermographic UAV platform[J]. Quantitative Infrared Thermography Journal, 2023, 20 (4): 198- 229.
doi: 10.1080/17686733.2022.2056987
|
7 |
SAHA A, KUMAR L, SORTEE S, et al. An autonomous aircraft inspection system using collaborative unmanned aerial vehicles[C]//Proc. of the IEEE Aerospace Conference, 2023.
|
8 |
FEVGAS G , LAGKAS T , ARGYRIOU V , et al. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles[J]. Sensors, 2022, 22 (3): 1235.
doi: 10.3390/s22031235
|
9 |
CAO Y , CHENG X H , MU J Z . Concentrated coverage path planning algorithm of UAV formation for aerial photography[J]. IEEE Sensors Journal, 2022, 22 (11): 11098- 11111.
doi: 10.1109/JSEN.2022.3168840
|
10 |
KYRIAKAKIS N A , MARINAKI M , MATSATSINIS N , et al. A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning[J]. European Journal of Operational Research, 2022, 300 (3): 992- 1004.
doi: 10.1016/j.ejor.2021.09.008
|
11 |
SHI Y , ZHANG Y Y . The neural network methods for solving traveling salesman problem[J]. Procedia Computer Science, 2022, 199, 681- 686.
doi: 10.1016/j.procs.2022.01.084
|
12 |
GIORDAN D , ADAMS M S , AICARDI I , et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications[J]. Bulletin of Engineering Geology and the Environment, 2020, 79, 3437- 3481.
doi: 10.1007/s10064-020-01766-2
|
13 |
JING W, POLDEN J, LIN W, et al. Sampling-based view planning for 3D visual coverage task with unmanned aerial vehi cle[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016: 1808-1815.
|
14 |
BIRCHER A, ALEXIS K, BURRI M, et al. Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2015: 6423-6430.
|
15 |
ABDI A , RANJBAR M H , PARK J H . Computer vision-based path planning for robot arms in three-dimensional workspaces using Q-learning and neural networks[J]. Sensors, 2022, 22 (5): 1697.
doi: 10.3390/s22051697
|
16 |
ALEXIS K, PAPACHRISTOS C, SIEGWART R, et al. Uniform coverage structural inspection path-planning for micro aerial vehicles[C]//Proc. of the IEEE International Symposium on Intelligent Control, 2015: 59-64.
|
17 |
陈丽, 陈洋, 杨艳华. 面向三维结构视觉检测的无人机覆盖路径规划[J]. 电子测量与仪器学报, 2023, 37 (2): 1- 10.
|
|
CHEN L , CHEN Y , YANG Y H . UAV coverage path planning for 3D structure visual inspection[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37 (2): 1- 10.
|
18 |
JUNG S W, SONG S W, YOUN P, et al. Multilayer coverage path planner for autonomous structural inspection of high-rise structures[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.
|
19 |
TONG H W, LI B, HUANG H, et al. UAV path planning for complete structural inspection using mixed viewpoint genera- tion[C]//Proc. of the 17th International Conference on Control, Automation, Robotics and Vision, 2022: 727-732.
|
20 |
ALMADHOUN R, TAHA T, DIAS J, et al. Coverage path planning for complex structures inspection using unmanned aerial vehicle (UAV)[C]//Proc. of the 12th Intelligent Robotics and Applications International Conference, 2019: 243- 266.
|
21 |
ALMADHOUN R, TAHA T, GAN D, et al. Coverage path planning with adaptive viewpoint sampling to construct 3D models of complex structures for the purpose of inspection[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018: 7047-7054.
|
22 |
HOU J M , GOEBEL M , HUBNER P , et al. Octree-based approach for real-time 3D indoor mapping using RGB-D video data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 48, 183- 190.
|
23 |
舒亮, 张洁, 陈璇, 等. 面向大规模场景的数字孪生模型快速渲染方法[J]. 计算机集成制造系统, 2022, 28 (11): 3664- 3672.
|
|
SHU L , ZHANG J , CHEN X , et al. Fast rendering method of digital twin model for large scale scenes[J]. Computer Integrated Manufacturing Systems, 2022, 28 (11): 3664- 3672.
|
24 |
QIAN X L , WU B K , CHENG G , et al. Building a bridge of bounding box regression between oriented and horizontal object detection in remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 1- 9.
|
25 |
KRIVOCHEN D G . The search for minimal search: a graph-theoretic approach[J]. Biolinguistics, 2023, 17, e9793.
doi: 10.5964/bioling.9793
|
26 |
DUCHON F , BABINEC A , KAJAN M , et al. Path planning with modified a star algorithm for a mobile robot[J]. Procedia Engineering, 2014, 96, 59- 69.
doi: 10.1016/j.proeng.2014.12.098
|
27 |
ZHENG J Z , HE K , ZHOU J R , et al. Reinforced Lin-Kernighan-Helsgaun algorithms for the traveling salesman problems[J]. Knowledge-Based Systems, 2023, 260, 110144.
doi: 10.1016/j.knosys.2022.110144
|
28 |
HU Q K , LIN Z W , FU J Z . A new global toolpath linking algorithm for different subregions with travelling saleman problem solver[J]. International Journal of Computer Integrated Manufacturing, 2022, 35 (6): 633- 644.
doi: 10.1080/0951192X.2021.1992667
|
29 |
DING Y K, ZHU Q T, LIU X Y, et al. KD-MVS: knowledge distillation based self-supervised learning for multi-view stereo[C]// Proc. of the European Conference on Computer Vision, 2022: 630-646.
|
30 |
LOPEZ L , CELLONE F . SfM-MVS and GIS analysis of shoreline changes in a coastal wetland, Parque Costero del Sur biosphere reserve, Argentina[J]. Geocarto International, 2022, 37 (26): 11134- 11150.
doi: 10.1080/10106049.2022.2046870
|