1 |
WU T , WANG J , TIAN B L . Periodic event-triggered formation control for multi-UAV systems with collision avoidance[J]. Chinese Journal of Aeronautics, 2022, 35 (8): 193- 203.
doi: 10.1016/j.cja.2021.10.011
|
2 |
DE-MORAES R S , DE-FREITAS E P . Multi-UAV based crowd monitoring system[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1332- 1345.
|
3 |
WEI C S , LUO J J , YIN Z Y , et al. Leader-following consensus of second-order multi-agent systems with arbitrarily appointed-time prescribed performance[J]. IET Control Theory & Applications, 2018, 12 (16): 2276- 2286.
|
4 |
DOKUYUCU HI , OZMEN N G . A non-contact object delivery system using leader-follower formation control for multi-robots[J]. International Journal of Applied Methods in Electronics and Computers, 2023, 11 (3): 134- 144.
|
5 |
LI Y D , ZHU L , GUO Y . Observer-based multivariable fixed-time formation control of mobile robots[J]. Journal of Systems Engineering and Electronics, 2020, 31 (2): 403- 414.
doi: 10.23919/JSEE.2020.000017
|
6 |
YAN X , JIANG D P , MIAO R L , et al. Formation control and obstacle avoidance algorithm of a multi-USV system based on virtual structure and artificial potential field[J]. Journal of Marine Science and Engineering, 2021, 9 (2): 161- 177.
doi: 10.3390/jmse9020161
|
7 |
YAN T , XU Z , YANG S X . Consensus formation tracking for multiple UAV systems using distributed bioinspired sliding mode control[J]. IEEE Trans.on Intelligent Vehicles, 2022, 8 (2): 1081- 1092.
|
8 |
YANG Y , XIAO Y , LI T S . A survey of autonomous underwater vehicle formation: performance, formation control, and communication capability[J]. IEEE Communications Surveys & Tutorials, 2021, 23 (2): 815- 841.
|
9 |
LI S , FANG X . A modified adaptive formation of UAV swarm by pigeon flock behavior within local visual field[J]. Aerospace Science and Technology, 2021, 114, 106736.
doi: 10.1016/j.ast.2021.106736
|
10 |
BALCH T , ARKIN R C . Behavior-based formation control for multirobot teams[J]. IEEE Trans.on Robotics and Automation, 1998, 14 (6): 926- 939.
doi: 10.1109/70.736776
|
11 |
HU J Q , WU H S , ZHAN R J , et al. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior[J]. Journal of Systems Engineering and Electro-nics, 2021, 32 (6): 1463- 1476.
doi: 10.23919/JSEE.2021.000124
|
12 |
CHEN L , DUAN H B . Collision-free formation-containment control for a group of UAVs with unknown disturbances[J]. Aerospace Science and Technology, 2022, 126, 107618.
doi: 10.1016/j.ast.2022.107618
|
13 |
DOU L Q , CAI S Y , ZHANG X Y , et al. Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV[J]. Journal of the Franklin Institute, 2022, 359 (8): 3671- 3691.
doi: 10.1016/j.jfranklin.2022.02.034
|
14 |
徐星光, 王晓峰, 姚璐, 等. 固定翼无人机编队构型与通信拓扑优化[J]. 系统工程与电子技术, 2022, 44 (9): 2936- 2946.
doi: 10.12305/j.issn.1001-506X.2022.09.29
|
|
XU X G , WANG X F , YAO L , et al. Formation configuration a nd communication topology optimization for fixed-wing UAVs[J]. Systems Engineering and Electronics, 2022, 44 (9): 2936- 2946.
doi: 10.12305/j.issn.1001-506X.2022.09.29
|
15 |
吴立尧, 苏析超, 王垒, 等. 有人/无人机编队队形集结控制研究[J]. 系统工程与电子技术, 2023, 45 (7): 2192- 2202.
|
|
WU L Y , SU X C , WANG L , et al. Research of formation rendezvous control for manned/ unmanned aerial vehicles for mation[J]. Systems Engineering and Electronics, 2023, 45 (7): 2192- 2202.
|
16 |
SEO J , KIM Y , KIM S , et al. Collision avoidance strategies for unmanned aerial vehicles in formation flight[J]. IEEE Trans.on Aerospace and Electronic Systems, 23017, 56 (6): 2718- 2734.
|
17 |
WANG N , DAI J Y , YING J . UAV formation obstacle avoidance control algorithm based on improved artificial potential field and consensus[J]. International Journal of Aeronautical and Space Sciences, 2021, 22 (6): 1413- 1427.
doi: 10.1007/s42405-021-00407-6
|
18 |
陈锦涛, 李鸿一, 任鸿儒, 等. 基于RRT森林算法的高层消防多无人机室内协同路径规划[J]. 自动化学报, 2023, 49 (12): 2615- 2626.
|
|
CHEN J T , LI H Y , REN H R , et al. Cooperative indoor path planning of multi-UAVs for high-rise fire fighting based on RRT-forest algorithm[J]. Acta Automatica Sinica, 2023, 49 (12): 2615- 2626.
|
19 |
WU Y , GOU J Z , HU X T , et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107, 106332.
doi: 10.1016/j.ast.2020.106332
|
20 |
费思远, 鲜斌, 王岭. 基于群集行为的分布式多无人机编队动态避障控制[J]. 控制理论与应用, 2022, 39 (1): 1- 11.
|
|
FEI S Y , XIAN B , WANG L . Distributed formation control for multiple unmanned aerial vehicles with dynamic obstacle avoidance based on the flocking behavior[J]. Control Theory and Technology, 2022, 39 (1): 1- 11.
|
21 |
LINDQVIST B , MANSOURI S S , AGHA-MOHAMMADI A , et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 5 (4): 6001- 6008.
doi: 10.1109/LRA.2020.3010730
|
22 |
SHIN J , KIM H J . Nonlinear model predictive formation flight[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009, 39 (5): 1116- 1125.
doi: 10.1109/TSMCA.2009.2021935
|
23 |
LIN W . Distributed UAV formation control using differential game approach[J]. Aerospace Science and Technology, 2014, 35, 54- 62.
doi: 10.1016/j.ast.2014.02.004
|
24 |
LIANG Y Q , DONG Q , ZHAO Y J . Adaptive leader-follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33 (11): 2972- 2988.
doi: 10.1016/j.cja.2020.03.020
|
25 |
MERCADO D A, CASTRO R, LOZANO R. Quadrotors flight formation control using a leader-follower approach[C]//Proc. of the European Control Conference, 2013: 3858-3863.
|
26 |
MAHMOOD A , KIM Y . Leader-following formation control of quadcopters with heading synchronization[J]. Aerospace Science and Technology, 2015, 47, 68- 74.
doi: 10.1016/j.ast.2015.09.009
|
27 |
李超兵, 包为民, 李忠奎, 等. 运载火箭推力故障不确定性下轨迹可达包络分析[J]. 宇航学报, 2023, 44 (1): 25- 33.
|
|
LI C B , BAO W M , LI Z K , et al. Trajectory reachable envelope analysis of launch vehicle under thrust failure and uncertainties[J]. Journal of Astronautics, 2023, 44 (1): 25- 33.
|
28 |
GELLER D K . Linear covariance techniques for orbital rendezvous analysis and autonomous onboard mission planning[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (6): 1404- 1434.
doi: 10.2514/1.19447
|
29 |
CHRISTENSEN R S , GELLER D . Linear covariance techniques for closed-loop guidance navigation and control system design and analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228 (1): 44- 65.
doi: 10.1177/0954410012467717
|
30 |
XING Y P , YIN Z Y , WEI C S , et al. Obstacle-avoidance safety- guaranteed rendezvous control with a velocity safety corridor and prescribed performance[J]. Journal of Aerospace Engineering, 2024, 37 (5): 4024054.
doi: 10.1061/JAEEEZ.ASENG-5564
|
31 |
MACKTOOBIAN M , SHOOREHDELI M A . Time-variant artificial potential field (TAPF): a breakthrough in power-optimized motion planning of autonomous space mobile robots[J]. Robotica, 2016, 34 (5): 1128- 1150.
doi: 10.1017/S0263574714002100
|
32 |
PAN Z H , ZHANG C X , XIA Y Q , et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Trans.on Circuits and Systems II: Express Briefs, 2021, 69 (3): 1129- 1133.
|
33 |
SHIN Y , KIM E . Hybrid path planning using positioning risk and artificial potential fields[J]. Aerospace Science and Technology, 2021, 112, 106640.
doi: 10.1016/j.ast.2021.106640
|