15 |
王鹏, 刘嘉琛, 董磊, 等. 面向任务的民机DIMA动态重构策略[J]. 系统工程与电子技术, 2021, 43 (6): 1618- 1627.
doi: 10.12305/j.issn.1001-506X.2021.06.19
|
|
WANG P , LIU J C , DONG L , et al. Task oriented DIMA dynamic reconfiguration strategy for civil aircraft[J]. Systems Engineering and Electronics, 2021, 43 (6): 1618- 1627.
doi: 10.12305/j.issn.1001-506X.2021.06.19
|
16 |
BRYAN M. Flight data for tail 676/687[EB/OL]. [2023-10-15]. https://c3.ndc.nasa.gov/dashlink/projects/85/resources/.
|
17 |
BARDOU N, OWENS D. Hard landing, a case study for crews and maintenance personnel[EB/OL]. [2023-10-15]. https://safetyfirst.airbus.com/hard-landing-a-case-study-for-crews-and-maintenance-personnel/.
|
18 |
HIETE M , MERZ M , COMES T , et al. Trapezoidal fuzzy DEMATEL method to analyze and correct for relations between variables in a composite indicator for disaster resilience[J]. OR Spectrum, 2012, 34, 971- 995.
doi: 10.1007/s00291-011-0269-9
|
19 |
DONG L , WANG P , YAN F . Damage forecasting based on multi-factor fuzzy time series and cloud model[J]. Journal of Intelligent Manufacturing, 2019, 30, 521- 538.
doi: 10.1007/s10845-016-1264-4
|
20 |
郑磊, 池宏, 许保光, 等. 飞机重着陆预警分析方法[J]. 数学的实践与认识, 2019, 49 (3): 56- 72.
|
|
ZHENG L , CHI H , XU B G , et al. Method of early analysis for aircraft hard landing[J]. Mathematics in Practice and Theory, 2019, 49 (3): 56- 72.
|
21 |
TONG C , YIN X , LI J , et al. An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data[J]. Applied Soft Computing Journal, 2018, 73, 344- 349.
|
22 |
李旭. 基于飞行数据的民航客机重着陆可解释性研究[D]. 重庆: 重庆大学, 2021.
|
|
LI X. Research on interpretability for hard landing incident of civil aircraft based on flight data[D]. Chongqing: Chongqing University, 2021.
|
23 |
QIAO X D, ZHANG W B, ZOU S H, et al. A prediction model of hard landing based on RBF neural network with K-means clustering algorithm[C]//Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2016: 462- 465.
|
24 |
CHEN H, ZHOU S H, XIE Y, et al. The study on hard landing prediction model with optimized parameter SVM method[C]// Proc. of the 35th Chinese Control Conference, 2016: 4283-4287.
|
25 |
SUN R S, LI C F. A risk prediction model of hard landing based on random forest algorithm[C]//Proc. of the E3S Web of Conferences, 2021.
|
1 |
The Boeing Company. Statistical summary of commercial jet airplane accidents worldwide operations 1959-2021[EB/OL]. [2023-11-15]. https://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf.
|
2 |
MH/T2001-2018. 新版民用航空器事故征候[S]. 北京: 中国民用航空局, 2018.
|
|
MH/T2001-2018. New version of civil aircraft accident symptoms[S]. Beijing: Civil Aviation Administration of China, 2018.
|
3 |
Doc 9859. Safety management manual[S]. Montreal: International Civil Aviation Organization, 2018.
|
4 |
European Union Aviation Safety Agency. Developing standardized FDM-based indicators[EB/OL]. [2023-11-15]. https://www.easa.europa.eu/en/downloads/13049/en.
|
5 |
AC 91-79A. Mitigating the risks of a runway overrun upon land ing[S]. Washington, DC: Federal Aviation Administration, 2016.
|
6 |
鲁志东, 张曙光, 戴闰志, 等. 大型民机进近着陆段异常能量风险判据[J]. 航空学报, 2021, 42 (6): 102- 115.
|
|
LU Z D , ZHANG S G , DAI R Z , et al. Abnormal energy risk criteria of large civil airplanes in approach and landing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (6): 102- 115.
|
7 |
陈农田, 满永政, 李俊辉. 基于QAR数据的民机高高原进近着陆风险评估方法[J]. 北京航空航天大学学报, 2024, 50 (1): 77- 85.
|
|
CHEN N T , MAN Y Z , LI J H . Risk assessment method of civ il aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (1): 77- 85.
|
8 |
LU X, CHEN D W, ZHANG F T. Grey correlation analysis of hard landing based on QAR data[C]//Proc. of the IEEE International Conference on Civil Aviation Safety and Information Technology, 2019: 79-83.
|
9 |
WANG L, WU C X, SUN R S, et al. An analysis of hard landing incidents based on flight QAR data[C]//Proc. of the 11th International Conference on Engineering Psychology and Cognitive Ergonomics, 2014: 398-406.
|
10 |
王冉, 高振兴. 基于飞行数据的民机着陆安全影响因素研究[J]. 交通信息与安全, 2019, 37 (4): 27- 34.
doi: 10.3963/j.issn.1674-4861.2019.04.004
|
|
WANG R , GAO Z X . Influencing factors of civil aircraft landing safety based on flight data[J]. Journal of Transport Information and Safety, 2019, 37 (4): 27- 34.
doi: 10.3963/j.issn.1674-4861.2019.04.004
|
11 |
史佳辉, 徐吉辉, 陈玉金, 等. 基于交互作用矩阵多维云模型的飞机重着陆风险评估方法研究[J]. 系统工程与电子技术, 2021, 43 (10): 3026- 3032.
doi: 10.12305/j.issn.1001-506X.2021.10.39
|
|
SHI J H , XU J H , CHEN Y J , et al. Research on risk assessment method of aircraft heavy landing based on interaction matrix-multidimensional cloud model[J]. Systems Engineering and Electronics, 2021, 43 (10): 3026- 3032.
doi: 10.12305/j.issn.1001-506X.2021.10.39
|
12 |
SI S L , YOU X Y , LIU H C , et al. DEMATEL technique: a systematic review of the state-of-the-art literature on methodo-logies and applications[J]. Mathematical Problems in Engineering, 2018, 20183696457.
|
13 |
CHEN H , LIU S , WANYAN X R , et al. Influencing factors of novice pilot SA based on DEMATEL-AISM method: from pilots' view[J]. Heliyon, 2023, 9 (2): e13425.
doi: 10.1016/j.heliyon.2023.e13425
|
14 |
JIAO J , WEI M W , YUAN Y , et al. Risk quantification and analysis of coupled factors based on the DEMATEL model and a Bayesian network[J]. Applied Sciences, 2019, 10 (1): 317.
doi: 10.3390/app10010317
|