| 1 | 
																						 
											 张世勇, 张雪波, 苑晶, 等. 旋翼无人机环境覆盖与探索规划方法综述[J]. 控制与决策, 2022, 37 (3): 513- 529.
											 											 | 
										
																													
																						 | 
																						 
											 ZHANG S Y, ZHANG X B, YUAN J, et al. A survey on coverage and exploration path planning with multi-rotor micro aerial vehicles[J]. Control and Decision, 2022, 37 (3): 513- 529.
											 											 | 
										
																													
																						| 2 | 
																						 
											 XU Y Q, LI J M, ZHANG F Q. A UAV-based forest fire patrol path planning strategy[J]. Forests, 2022, 13 (11): 1952. 
											 												 
																									doi: 10.3390/f13111952
																																			 											 | 
										
																													
																						| 3 | 
																						 
											 CHOSET H. Coverage of known spaces: the boustrophedon cellular decomposition[J]. Autonomous Robots, 2000, 9, 247- 253. 
											 												 
																									doi: 10.1023/A:1008958800904
																																			 											 | 
										
																													
																						| 4 | 
																						 
											 FEVGAS G, LAGKAS T, ARGYRIOU V, et al. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles[J]. Sensors, 2022, 22 (3): 1235. 
											 												 
																									doi: 10.3390/s22031235
																																			 											 | 
										
																													
																						| 5 | 
																						 
											 HUANG W H. Optimal line-sweep-based decompositions for coverage algorithms[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2001.
											 											 | 
										
																													
																						| 6 | 
																						 
											 TORRES M, PELTA D A, VERDEGAY J L, et al. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction[J]. Expert Systems with Applications, 2016, 55, 441- 451. 
											 												 
																									doi: 10.1016/j.eswa.2016.02.007
																																			 											 | 
										
																													
																						| 7 | 
																						 
											 薛镇涛, 陈建, 张自超, 等. 基于复杂地块凸划分优化的多无人机覆盖路径规划[J]. 航空学报, 2022, 43 (12): 403- 417.
											 											 | 
										
																													
																						 | 
																						 
											 XUE Z T, CHEN J, ZHANG Z C, et al. Multi-UAV coverage path planning based on optimization of convex division of complex plots[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (12): 403- 417.
											 											 | 
										
																													
																						| 8 | 
																						 
											 于全友, 徐止政, 段纳, 等. 基于改进ACO的带续航约束无人机全覆盖作业路径规划[J]. 航空学报, 2023, 44 (12): 303- 315.
											 											 | 
										
																													
																						 | 
																						 
											 YU Q Y, XU Z Z, DUAN N, et al. Coverage operation path planning of UAV with endurance constraints based on improved ACO[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (12): 303- 315.
											 											 | 
										
																													
																						| 9 | 
																						 
											 ZHAO T F, AI C Y, YAO J T, et al. Multi-UAV airborne UV area coverage and task assignment method[J]. Physical Communication, 2024, 62, 102230. 
											 												 
																									doi: 10.1016/j.phycom.2023.102230
																																			 											 | 
										
																													
																						| 10 | 
																						 
											 WAN F, YANG H, MENG Q X. A three-dimensional coverage path planning method for multi-UAV collaboration[C]// Proc. of the 30th International Conference on Geoinformatics, 2023.
											 											 | 
										
																													
																						| 11 | 
																						 
											 LI D S, WANG X L, SUN T. Energy-optimal coverage path planning on topographic map for environment survey with unmanned aerial vehicles[J]. Electronics Letters, 2016, 52 (9): 699- 701. 
											 												 
																									doi: 10.1049/el.2015.4551
																																			 											 | 
										
																													
																						| 12 | 
																						 
											 DAI R, FOTEDAR S, RADMANESH M, et al. Quality-aware UAV coverage and path planning in geometrically complex environments[J]. Ad Hoc Networks, 2018, 73, 95- 105. 
											 												 
																									doi: 10.1016/j.adhoc.2018.02.008
																																			 											 | 
										
																													
																						| 13 | 
																						 
											 WANG H P, ZHANG S Y, ZHANG X Y, et al. Near-optimal 3-D visual coverage for quadrotor unmanned aerial vehicles under photogrammetric constraints[J]. IEEE Trans. on Industrial Electronics, 2022, 69 (2): 1694- 1704. 
											 												 
																									doi: 10.1109/TIE.2021.3060643
																																			 											 | 
										
																													
																						| 14 | 
																						 
											 WANG H P, SONG S Y, GUO Q H, et al. Cooperative motion planning for persistent 3D visual coverage with multiple quadrotor UAVs[J]. IEEE Trans. on Automation Science and Engineering, 2023, 21 (3): 3374- 3383.
											 											 | 
										
																													
																						| 15 | 
																						 
											 HO W, HO G T S, JI P, et al. A hybrid genetic algorithm for the multi-depot vehicle routing problem[J]. Engineering Applications of Artificial Intelligence, 2008, 21 (4): 548- 557. 
											 												 
																									doi: 10.1016/j.engappai.2007.06.001
																																			 											 | 
										
																													
																						| 16 | 
																						 
											 WAN F, GUO H X, PAN W W, et al. A mathematical method for solving multi-depot vehicle routing problem[J]. Soft Computing, 2023, 27 (21): 15699- 15717. 
											 												 
																									doi: 10.1007/s00500-023-08811-8
																																			 											 | 
										
																													
																						| 17 | 
																						 
											 LALLA-RUIZ E, MES M. Mathematical formulations and improvements for the multi-depot open vehicle routing problem[J]. Optimization Letters, 2021, 15 (1): 271- 286. 
											 												 
																									doi: 10.1007/s11590-020-01594-z
																																			 											 | 
										
																													
																						| 18 | 
																						 
											 SUN W C, LUO Z H, HUANG K H, et al. Joint deployment and coverage path planning for capsule airports with multiple drones[J]. Drones, 2023, 7 (7): 457. 
											 												 
																									doi: 10.3390/drones7070457
																																			 											 | 
										
																													
																						| 19 | 
																						 
											 STODOLA P, KUTEJ L. Multi-depot vehicle routing problem with drones: mathematical formulation, solution algorithm and experiments[J]. Expert Systems with Applications, 2024, 241, 122483. 
											 												 
																									doi: 10.1016/j.eswa.2023.122483
																																			 											 | 
										
																													
																						| 20 | 
																						 
											 LIN Y, WANG T Y, WANG S W. Trajectory planning for multi-UAV assisted wireless networks in post-disaster scenario[C]// Proc. of the IEEE Global Communications Conference, 2019.
											 											 | 
										
																													
																						| 21 | 
																						 
											 LI X H, LI P F, ZHAO Y, et al. A hybrid large neighborhood search algorithm for solving the multi depot UAV swarm routing problem[J]. IEEE Access, 2021, 9, 104115- 104126. 
											 												 
																									doi: 10.1109/ACCESS.2021.3098863
																																			 											 | 
										
																													
																						| 22 | 
																						 
											 CAO Y, WEI W Y, BAI Y, et al. Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm[J]. Cluster Computing, 2019, 22 (S3): 5175- 5184. 
											 												 
																									doi: 10.1007/s10586-017-1132-9
																																			 											 | 
										
																													
																						| 23 | 
																						 
											 LIU Z L, SENGUPTA R, KURZHANSKIY A. A power consumption model for multi-rotor small unmanned aircraft systems[C]// Proc. of the International Conference on Unmanned Aircraft Systems, 2017: 310–315.
											 											 | 
										
																													
																						| 24 | 
																						 
											 RAJ R, MURRAY C. The multiple flying sidekicks traveling salesman problem with variable drone speeds[J]. Transportation Research Part C: Emerging Technologies, 2020, 120, 102813. 
											 												 
																									doi: 10.1016/j.trc.2020.102813
																																			 											 | 
										
																													
																						| 25 | 
																						 
											 MILLER C E, TUCKER A W, ZEMLIN R A. Integer programming formulation of traveling salesman problems[J]. Journal of the ACM, 1960, 7 (4): 326- 329. 
											 												 
																									doi: 10.1145/321043.321046
																																			 											 | 
										
																													
																						| 26 | 
																						 
											 HELSGAUN K. General k-opt submoves for the Lin–Kernighan TSP heuristic[J]. Mathematical Programming Computation, 2009, 1, 119- 163. 
											 												 
																									doi: 10.1007/s12532-009-0004-6
																																			 											 | 
										
																													
																						| 27 | 
																						 
											 ZHENG J Z, HE K, ZHOU J R, et al. Reinforced Lin–Kernighan–Helsgaun algorithms for the traveling salesman problems[J]. Knowledge-Based Systems, 2023, 260, 110144. 
											 												 
																									doi: 10.1016/j.knosys.2022.110144
																																			 											 | 
										
																													
																						| 28 | 
																						 
											 SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2 (3): 221- 248. 
											 												 
																									doi: 10.1162/evco.1994.2.3.221
																																			 											 | 
										
																													
																						| 29 | 
																						 
											 中国科学院计算机网络信息中心. 地理空间数据云[EB/OL]. [2024-04-28]. https://www.gscloud. cn/.
											 											 | 
										
																													
																						 | 
																						 
											 Chinese Computer Network Information Center. Geo spatial Data Cloud[EB/OL]. [2024-04-28]. https://www.gscloud.cn/.
											 											 | 
										
																													
																						| 30 | 
																						 
											 大疆行业应用. 经纬 M30 系列_技术参数 [EB/OL]. [2024-04-28]. https://enterprise.dji.com/cn/matrice-30/specs.
											 											 | 
										
																													
																						 | 
																						 
											 DJI Enterprise. Martice M30 Series_Specs [EB/OL]. [2024-04-28]. https://enterprise.dji.com/cn/matrice-30/specs.
											 											 | 
										
																													
																						| 31 | 
																						 
											 XIAO Z, WAN F, LEI G B, et al. FL-YOLOv7: a lightweight small object detection algorithm in forest fire detection[J]. Forests, 2023, 14 (9): 1812. 
											 												 
																									doi: 10.3390/f14091812
																																			 											 |