系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2612-2621.doi: 10.12305/j.issn.1001-506X.2025.08.18

• 系统工程 • 上一篇    

无人机光伏电站巡检双目标选址-路径问题研究

李延通1,*(), 李子璠1, 周姗姗1(), 张闯2   

  1. 1. 大连海事大学航运经济与管理学院,辽宁 大连 116026
    2. 武警工程大学装备管理与保障学院,陕西 西安 710086
  • 收稿日期:2024-06-11 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 李延通 E-mail:yantongli@163.com;shanshan202098@126.com
  • 作者简介:李子璠(1999—),女,硕士研究生,主要研究方向为无人机选址与调度
    周姗姗(1998—),女,博士研究生,主要研究方向为物流与供应链管理
    张 闯(1994—),男,讲师,博士,主要研究方向包括物流优化、装备保障、军事智能
  • 基金资助:
    国家自然科学基金(72201044); 教育部人文社会科学青年基金(22YJC630071);中国博士后科学基金面上资助一等(2022M710018)资助课题

Bi-objective location-routing problem of UAV for photovoltaic power station inspection research

Yantong LI1,*(), Zifan LI1, Shanshan ZHOU1(), Chuang ZHANG2   

  1. 1. School of Maritime Economics and Management,Dalian Maritime University,Dalian 116026,China
    2. School of Equipment Management and Support,Engineering University of PAP,Xi’an 710086,China
  • Received:2024-06-11 Online:2025-08-25 Published:2025-09-04
  • Contact: Yantong LI E-mail:yantongli@163.com;shanshan202098@126.com

摘要:

为进一步提升分布式光伏电站巡检效率,降低巡检成本,将无人机机场选址、巡检任务分配及无人机飞行路径规划等抽象为选址-路径组合优化问题,构建双目标混合整数线性规划模型同时最小化机场建设成本和巡检任务时长。为求解该问题,首先利用ε-约束算法进行求解,随后提出改进的基于非支配解排序的遗传算法(non-dominated sorting genetic algorithm,NSGA-II),通过加入可行性判断机制、考虑灵活度的分配规则以及运用混合粒子群算法等提升算法性能。实验部分,首先基于相关数据开展案例分析。随后生成80个随机算例进行数值实验,将改进NSGA-II与ε-约束算法及基础NSGA-II的求解结果进行对比分析,并开展关键参数灵敏度实验,充分验证本文提出的改进NSGA-Ⅱ算法的良好性能。

关键词: 分布式光伏电站, 智能巡检, 无人机调度, 多目标优化, 选址-路径组合优化

Abstract:

To improve the efficiency while reduce the cost of distributed photovoltaic power station inspection, this paper integrates the unmanned aerial vehicle (UAV) airport location selection, inspection task allocation, and UAV flight path planning into a class of location-path combination optimization problems. To simultaneously minimize the airport construction costs and inspection makespan, a bi-objective mixed integer linear programming model is constructed. To solve this problem, the ε-constraint algorithm is first used, followed by an improved non-dominated sorting genetic algorithm (NSGA-II). The improved NSGA-II incorporates a feasibility judgment mechanism and designs task point allocation based on the flexibility-oriented, to improve algorithm performance. In the experimental section, a case analysis is conducted based on relevant data. Then, 80 randomly-generated instances are generated for numerical experiments, to compare the performances between the improved NSGA-II with the ε-constrained algorithm and the basic NSGA-II. Sensitivity analysis of key parameters is also conducted to fully verify the good performance of the improved NSGA-II proposed in this paper.

Key words: distributed photovoltaic power station, intelligent inspection, unmanned aerial vehicle scheduling, bi-objective optimization, location-routing combinatorial optimization

中图分类号: