1 |
JIANG D, DELGROSSI L. IEEE 802.11p: towards an international standard for wireless access in vehicular environments[C] // Proc. of the IEEE Conference on Vehicular Technology, 2008.
|
2 |
KYUNBYOUNG K, HANHO W. Noise-canceling channel estimation schemes based on the cir length estimation for IEEE 802.11p/OFDM systems[J]. Electronics, 2024, 13 (6): 1110.
doi: 10.3390/electronics13061110
|
3 |
FERNANDEZ J, BORRIES K, CHENG L, et al. Performance of the 802.11p physical layer in vehicle-to-vehicle environments[J]. IEEE Trans. on Vehicular Technology, 2012, 61 (1): 3- 14.
doi: 10.1109/TVT.2011.2164428
|
4 |
WANG T, HUSSAIN A, CAO Y, et al. An improved channel estimation technique for IEEE 802.11p standard in vehicular communications[J]. Sensors, 2019, 19 (1): 98.
|
5 |
KYUNBYOUNG K, HANHO W. The channel estimation based on FSC method for IEEE 802.11p OFDM system[C] // Proc. of the 14th International Conference on Information and Communication Technology Convergence, 2023.
|
6 |
HAN S H, PARK J S, SONG C. Virtual subcarrier aided channel estimation schemes for tracking rapid time variant channels in IEEE 802.11p systems[C] // Proc. of the IEEE Conference on Vehicular Technology, 2020.
|
7 |
GIZZINI A K, CHAFII M. Low complex methods for robust channel estimation in doubly dispersive environments[J]. IEEE Access, 2022, 10, 34321- 34339.
doi: 10.1109/ACCESS.2022.3162928
|
8 |
桂冠, 王禹, 黄浩. 基于深度学习的物理层无线通信技术: 机遇与挑战[J]. 通信学报, 2019, 40 (2): 19- 23.
|
|
GUI G, WANG Y, HUANG H. Deep learning-based wireless communication technologies at the physical layer: opportunities and challenges[J]. Journal of Communications, 2019, 40 (2): 19- 23.
|
9 |
孟帆. 基于深度学习的无线通信物理层关键技术研究[D]. 南京: 东南大学, 2020.
|
|
MENG F. Research on key techniques of deep learning-based wireless physical layer [D]. Nanjing: Southeast University, 2020.
|
10 |
季策, 宋博翰, 耿蓉, 等. 快时变信道下基于深度学习的OFDM系统信道估计[J]. 系统工程与电子技术, 2023, 45 (11): 3649- 3655.
|
|
JI C, SONG B H, GENG R, et al. Deep learning based channel estimation for OFDM systems in fast time-varying channel[J]. Systems Engineering and Electronics, 2023, 45 (11): 3649- 3655.
|
11 |
HAN S H, OH Y J, SONG C. A deep learning based channel estimation scheme for IEEE 802.11p systems[C] // Proc. of the IEEE International Conference on Communications, 2019.
|
12 |
PAN J, SHAN H G, LI R P, et al. Channel estimation based on deep learning in vehicle-to-everything environments[J]. IEEE Communication Latter, 2021, 25 (6): 1891- 1895.
doi: 10.1109/LCOMM.2021.3059922
|
13 |
GIZZINI A K, CHAFII M, EHSANFAR S, et al. Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard[C] // Proc. of the IEEE Global Communnication Conference, 2021.
|
14 |
HOU J, LIU H J, ZHANG Y, et al. GRU-based deep learning channel estimation scheme for the IEEE 802.11p standard[J]. IEEE Wireless Communications Letters, 2023, 12 (5): 764- 768.
doi: 10.1109/LWC.2022.3187110
|
15 |
ACOST M, GUILLERMO, WEIT N, et al. Six time and frequency-selective empirical channel models for vehicular wireless LANs[J]. IEEE Vehicular Technology Magazine, 2007, 2 (4): 4- 11.
doi: 10.1109/MVT.2008.917435
|