| 1 |
WEI Z H, ZHANG B C, XU Z L, et al. An improved SAR imaging method based on nonconvex regularization and convex optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (10): 1580- 1584.
doi: 10.1109/LGRS.2019.2904520
|
| 2 |
TIAN H, LI D J. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395−1399.
|
| 3 |
ZHANG Y D, AMIN M G, HIMED B. Structure-aware sparse reconstruction and applications to passive multi-static radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (2): 68- 78.
doi: 10.1109/MAES.2017.160021
|
| 4 |
邓佳欣, 苗毅, 朱江. 浅谈压缩感知方法及其在雷达领域的应用[J]. 价值工程, 2017, 36 (18): 243- 245.
doi: 10.14018/j.cnki.cn13-1085/n.2017.18.098
|
|
DENG J X, MIAO Y, ZHU J. On compression sensing method and its application in radar field[J]. Value Engineering, 2017, 36 (18): 243- 245.
doi: 10.14018/j.cnki.cn13-1085/n.2017.18.098
|
| 5 |
WANG L, ZHAO L E, RAHARDJAS, et al. Alternative to extended block sparse bayesian learning and its relation to pattern-coupled sparse Bayesian learning[J]. IEEE Trans. on Signal Processing, 2018, 66 (10): 2759- 2771.
doi: 10.1109/TSP.2018.2816574
|
| 6 |
沈笑云, 廖仙华, 孙卫天, 等. 可变先验贝叶斯学习稀疏SAR成像[J]. 系统工程与电子技术, 2021, 43 (7): 1781- 1790.
|
|
SHEN X Y, LIAO X H, SUN W T, et al. Sparse SAR imaging based on varying prior Bayes learning[J]. Systems Engineering and Electronics, 2021, 43 (7): 1781- 1790.
|
| 7 |
杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43 (3): 623- 631.
|
|
YANG L, XIA Y B, MAO X Y, et al. Sparse ISAR imaging algorithm based on Bayesian-lasso[J]. Journal of Electronics & Information Technology, 2021, 43 (3): 623- 631.
|
| 8 |
LIU S H, JIA J B, ZHANG Y D, et al. Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning[J]. IEEE Trans. on Medical Imaging, 2018, 37(9): 2090−2102.
|
| 9 |
SRIKRISHNAN T A, RAO B D. Addressing the noise variance problem in sparse Bayesian learning[J]. San Diego: University of California, 2018.
|
| 10 |
KARSERAS E, LEUNG K, DAI W. Bayesian compressed sensing: improving inference[C]// Proc. of IEEE China Summit and International Conference on Signal and Information Processing, 2013.
|
| 11 |
YU S Q, ZHANG Q H, QIN Q, et al. Microwave imaging of inhomogeneous objects based on Bayesian compressed sensing[C]// Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019.
|
| 12 |
ZHANG S, LIU Y, LI X. Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition[J]. IEEE Trans. on Image Processing, 2018, 27 (5): 2447- 2460.
doi: 10.1109/TIP.2018.2803300
|
| 13 |
DUAN H P, ZHANG L Z, FANG J, et al. Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging[J]. IEEE Signal Processing Letters, 2015, 22 (11): 1995- 1999.
doi: 10.1109/LSP.2015.2452412
|
| 14 |
ZHANG H H, RU S C. Coherent processing and super-resolution technique of multi-band radar data based on fast sparse Bayesian learning algorithm[J]. IEEE Trans. on Antennas and Propagation, 2014, 62 (12): 6217- 6227.
doi: 10.1109/TAP.2014.2361158
|
| 15 |
XIN B , WANG Y Z, GAO W, et al. Maximal sparsity with deep networks?[EB/OL]. [2024-07-01]. http: //lanl.arxiv.org/abs/1605.01636v1.
|
| 16 |
LUO S, TAI X C, HUO L, et al. Convex shape prior for multi-object segmentation using a single level set function[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 613−621.
|
| 17 |
WAHLBERG B, BOYD S, ANNERGREN M , et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 2012, 45(16): 83−88.
|
| 18 |
ZHANG S H, LIU Y X, LI X. Computationally efficient sparse aperture ISAR autofocusing and imaging based on fast ADMM[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (12): 8751- 8765.
doi: 10.1109/TGRS.2020.2990445
|
| 19 |
邓理康, 张双辉, 张弛, 等. 一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法[J]. 雷达学报, 2021, 10 (3): 416- 431.
|
|
DENG L K, ZHANG S H, ZHANG C, et al. A multiple-input multiple-output inverse synthetic aperture radar imaging method based on multidimensional alternating direction method of multipliers[J]. Journal of Radars, 2021, 10 (3): 416- 431.
|
| 20 |
GUNGOR A, CETIN M, GUVEN H E. Auto-focused compressive SAR imaging based on the alternating direction method of multipliers[C]// Proc. of the IEEE Radar Conference, 2017: 1573−1576.
|
| 21 |
SONG W Q, NAZAROVA M N, ZHANG Y J, et al. Sparse reconstruction based on the ADMM and Lasso-LSQR for bearings vibration signals[J]. IEEE Access, 2017, 5, 20083- 20088.
doi: 10.1109/ACCESS.2017.2757026
|
| 22 |
KAMIYA N. ADMM-based MIMO equalization algorithm for SDM transmission with high MDL tolerance[J]. IEEE Journal on Selected Areas in Communications, 2025, 43 (5): 1427- 1439.
doi: 10.1109/JSAC.2025.3549888
|
| 23 |
BENHALOUCHE F Z, KAROUI M S, DEVILLE Y. An ADMM-based approach associated with a linear mixing model multiplicatively tuned to deal with spectral variability in hyperspectral unmixing[C]// Proc. of the IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, 2024: 49−53.
|
| 24 |
CHEN P, CHEN Z M, MAO P, et al. RIS-ADMM: a RIS and ADMM-based passive and sparse sensing method with interference removal[J]. IEEE Communications Letters, 2024, 28 (4): 867- 871.
doi: 10.1109/LCOMM.2024.3369049
|
| 25 |
POTTER L C, CHIANG D M. A GTD-based parametric model for radar scattering[J]. IEEE Trans. on Antennas and Propagation, 1995, 43 (10): 1058- 1067.
doi: 10.1109/8.467641
|
| 26 |
朱鹏博. 基于属性散射中心模型的多雷达数据融合成像[D]. 南京: 南京理工大学, 2018.
|
|
ZHU P B. Multi-radar data fusion imaging based on attribute scattering center model[D]. Nanjing: Nanjing University of Science and Technology, 2018.
|
| 27 |
LE Z, WU S J, JIA D. Sparse-aperture ISAR imaging of maneuvering targets with sparse representation[C]// Proc. of the IEEE Radar Conference, 2015.
|
| 28 |
DAS K, RAO J N K, JIANG J M. Mean squared error of empirical predictor[J]. Annals of Statistics, 2004, 32(2): 818−840.
|
| 29 |
YOO J C, AHM C W. Image matching using peak signal-to-noise ratio-based occlusion detection[J]. IET Image Processing, 2012, 6(5): 483−495.
|
| 30 |
胡利平, 董纯柱, 邢笑宇, 等. SAR图像目标和阴影径向积分特征评估[J]. 电波科学学报, 2014, 29(2): 254−259,287.
|
|
HU L P, DONG C Z, XING X Y, et al. An evaluation method of SAR images based on radial integral features of target and shadow[J]. Chinese Journal of Radio Science, 2014, 29(2): 254−259, 287.
|
| 31 |
MARTIMI M. A simple relationship between SSIM and PSNR for DCT-based compressed images and video: SSIM as content-aware PSNR[C]// Proc. of the IEEE 25th International Workshop on Multimedia Signal Processing, 2023.
|