系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 12-21.doi: 10.12305/j.issn.1001-506X.2026.01.02

• 电子技术 • 上一篇    下一篇

基于高阶递归网络的单幅图像去雨滴模型

包玉刚(), 贾皓翔, 赵旦峰   

  1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2024-09-15 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 包玉刚 E-mail:baoyugang21@163.com
  • 作者简介:贾皓翔(1996—)男,博士研究生,主要研究方向为高性能编码调制方案
    赵旦峰(1961—)男,教授,博士,主要研究方向为现代通信系统与通信信号处理
  • 基金资助:
    中国电子科技集团公司第五十四研究所校企合作项目(KY10800210062)资助课题

Single image raindrop removal model based on high-order recursive network

Yugang BAO(), Haoxiang JIA, Danfeng ZHAO   

  1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2024-09-15 Online:2026-01-25 Published:2026-02-11
  • Contact: Yugang BAO E-mail:baoyugang21@163.com

摘要:

目前单幅图像去雨滴模型提取大尺度雨滴特征的能力较差,导致精度不高,无法很好地应用在复杂多变的实际场景中。为此,提出一种基于高阶递归网络的单幅图像去雨滴模型。首先,利用结合注意力机制的分组卷积构建一种双尺度注意力残差模块,更好地提取大尺度雨滴的有效特征。其次,设计一种高阶递归特征传递机制,有效强化了这些特征从局部到整体的传递作用。最后,提出一种双尺度残差门控循环单元,建立了对递归计算中逐阶段特征的反馈过程,进一步提高了模型的性能。实验结果表明,提出的高阶递归网络在公开的基准数据集上取得了当前最优的性能表现,较好解决了当前算法精度不足的问题。

关键词: 高阶递归, 深度学习, 单幅图像去雨滴, 双尺度残差, 分组卷积, 门控循环单元

Abstract:

At present, the ability of extracting large-scale raindrop features from single image raindrop models is poor, resulting in low accuracy and inability to be well applied in complex and varied practical scenes. Therefore, a single image raindrop removal model based on high-order recursive network is proposed. First, a dual-scale attention residual module by using group convolution combined with attention mechanism is constructed. It better extracts effective features of large-scale raindrops. Second, a high-order recursive feature transfer mechanism is designed to effectively enhance the transfer process of these features from local to global. Last, a dual-scale residual gated recurrent unit is proposed, which establishes feedback process on the features of each stage in the recursive calculation, further improving the model’s performance. The experimental results show that the proposed high-order recursive network has achieved the best performance on publicly available benchmark datasets, effectively solving the problem of insufficient accuracy in current algorithms.

Key words: high-order recursive, deep learning, single image raindrop removal, dual-scale residual, group convolution, gated recurrent unit

中图分类号: