| 4 |
RINEHART R E, GARVEY E T. Three-dimensional storm motion detection by conventional weather radar[J]. Nature, 1978, 273 (5660): 287- 289.
doi: 10.1038/273287a0
|
| 5 |
SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proc. of the 29th International Conference on Neural Information Processing Systems, 2015: 802−810.
|
| 6 |
JING J R, LI Q, PENG X, et al. HPRNN: a hierarchical sequence prediction model for long-term weather radar echo extrapolation[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4142−4146.
|
| 7 |
WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]// Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 879−888.
|
| 8 |
WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]// Proc. of the 35th International Conference on Machine Learning, 2018, 80: 5123−5132.
|
| 9 |
WANG Y B, WU H X, ZHANG J J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning [J]. IEEE Trans. on Pattern Analysis and Aachine Intelligence, 2023, 45(2): 2208−2225.
|
| 10 |
何诗扬, 汪玲, 朱岱寅, 等. 基于时空记忆解耦RNN的雷暴预测方法[J]. 系统工程与电子技术, 2023, 45 (11): 3474- 3480.
|
|
HE S Y, WANG L, ZHU D Y, et al. Thunderstorm prediction method based on spatio temporal memory decoupling RNN[J]. Systems Engineering and Electronics, 2023, 45 (11): 3474- 3480.
|
| 11 |
CHEN Q, LIU Y B, GE M F, et al. A novel bayesian-optimization-based adversarial TCN for RUL prediction of bearings[J]. IEEE Sensors Journal, 2022, 22 (21): 20968- 20977.
doi: 10.1109/JSEN.2022.3209894
|
| 12 |
TONG C, ZHANG L H, LI H, et al. Temporal inception convolutional network based on multi-head attention for ultra-short-term load forecasting [J]. IET Generation, Transmission & Distribution, 2022, 16(8): 1680−1696.
|
| 13 |
ALTAHERI H, MUHAMMAD G, ALSULAIMAN M. Physics-informed attention temporal convolutional network for EEG-based motor imagery classification[J]. IEEE Trans. on Industrial Informatics, 2022, 19 (2): 2249- 2258.
|
| 14 |
李云峰, 高云鹏, 张蓬鹤, 等. 多目标优化时域卷积神经网络的窃电行为高准确检测算法 [J]. 电网技术, 2024, 48(8): 3449−3458.
|
|
LI Y F, GAO Y P, ZHANG P H, et al. High-accuracy detection algorithm of electricity theft behavior based on multi-objective optimization time-domain convolutional neural network [J]. Power System Technology, 2024, 48(8): 3449−3458.
|
| 15 |
ZHANG B, WANG S, DENG L, et al. Ship motion attitude prediction model based on IWOA-TCN-Attention[J]. Ocean Engineering, 2023, 272, 113911.
doi: 10.1016/j.oceaneng.2023.113911
|
| 16 |
SHU J, LIAO Y C, LI J H. Spatial-temporal attention TCN-based link prediction for opportunistic network[J]. Electronics, 2024, 13 (5): 957- 970.
doi: 10.3390/electronics13050957
|
| 17 |
张梦凡, 丁兵兵, 贾国栋, 等. 基于TCN-BiLSTM与LSTM模型对比预测北洛河径流[J]. 北京林业大学学报, 2024, 46 (4): 141- 148.
|
|
ZHANG M F, DING B B, JIA G D, et al. Comparative prediction of runoff in the Beiluo River, Shaanxi Province of Northwestern China based on TCN-BiLSTM and LSTM models[J]. Journal of Beijing Forestry University, 2024, 46 (4): 141- 148.
|
| 18 |
焦卫东, 杨蓓. MDAT-Net: 一种融合MSC和时空注意力的TCN航迹预测方法 [EB/OL]. [2024-09-27]. https://doi.org/10.13700/j.bh.1001-5965.2023.0717.
|
|
JIAO W D, YANG B. MDAT-Net: a TCN trajectory prediction method fusing MSC and spatio-temporal attention [EB/OL]. [2024-09-27]. https://doi.org/10.13700/j.bh.1001-5965.2023.0717.
|
| 19 |
杨达, 刘家威, 郑斌, 等. 基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J]. 交通运输系统工程与信息, 2024, 24 (2): 114- 126.
|
|
YANG D, LIU J W, ZHENG B, et al. A vehicle lane-changing trajectory prediction model based on temporal convolutional networks and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (2): 114- 126.
|
| 20 |
YE W, KUANG H, DENG K, et al. LGTCN: a spatial–temporal traffic flow prediction model based on local-global feature fusion temporal convolutional network[J]. Applied Sciences, 2024, 14 (19): 8847- 8862.
doi: 10.3390/app14198847
|
| 21 |
SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 5622−5632.
|
| 22 |
AYZEL G, HEISTERMANN M, WINTERRATH T. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)[J]. Geoscientific Model Development, 2019, 12 (4): 1387- 1402.
doi: 10.5194/gmd-12-1387-2019
|
| 23 |
QIN Y J, GAN F F, XIA B Z, et al. Remaining useful life estimation of bearing via temporal convolutional networks enhanced by a gated convolutional unit[J]. Engineering Applications of Artificial Intelligence, 2024 (133): 108308.
|
| 1 |
MULLER R, BARLEBEN A, HAUSSLER S, et al. A novel approach for the global detection and nowcasting of deep convection and thunderstorms[J]. Remote Sensing, 2022, 14 (14): 3372- 3384.
doi: 10.3390/rs14143372
|
| 2 |
D’AMATO G, VITALE C, D’AMATO M, et al. Thunderstorm-related asthma: what happens and why[J]. Clinical and Experimental Allergy, 2016, 46 (3): 390- 396.
doi: 10.1111/cea.12709
|
| 3 |
ZHANG F G, LAI C, CHEN W J. Weather radar echo extrapolation method based on deep learning[J]. Atmosphere, 2022, 13 (5): 815- 834.
doi: 10.3390/atmos13050815
|
| 24 |
RAZA A, UDDIN J, ALMUHAIMEED A, et al. AIPs-SnTCN: predicting anti-inflammatory peptides using fastText and transformer encoder-based hybrid word embedding with self-normalized temporal convolutional networks[J]. Chemical Information and Modeling, 2023, 63 (21): 6537- 6554.
doi: 10.1021/acs.jcim.3c01563
|
| 25 |
OORD D V A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks [C]//Proc. of the International Conference on Machine Learning, 2016: 1747−1756.
|
| 26 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848.
|
| 27 |
OORD D V A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio [EB/OL]. [2024-09-27]. https://www.arxiv.org.pdf.1609.03499.
|
| 28 |
GILLELAND E, AHIJEVYCH D, BROWN B G, et al. Intercomparison of spatial forecast verification methods[J]. Weather and Forecasting, 2009, 24 (5): 1416- 1430.
doi: 10.1175/2009WAF2222269.1
|
| 29 |
MARZBAN C. Scalar measures of performance in rare-event situations[J]. Weather and Forecasting, 1998, 13 (3): 753- 763.
doi: 10.1175/1520-0434(1998)013<0753:SMOPIR>2.0.CO;2
|
| 30 |
龚勋, 胡嘉骏, 徐年平, 等. 基于深度学习的多普勒气象雷达回波外推短临预报对比研究[J]. 中国军转民, 2022 (13): 76- 80.
|
|
GONG X, HU J J, XU N P, et al. A comparative study of Doppler weather radar echo extrapolation short prognosis based on deep learning[J]. Defense Industry Conversion in China, 2022 (13): 76- 80.
|