系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3559-3567.doi: 10.12305/j.issn.1001-506X.2025.11.05

• 电子技术 • 上一篇    

基于STOD的无人机舰船图像微小目标检测方法

姜杰(), 闫文君, 凌青, 张立民   

  1. 海军航空大学信息融合研究所,山东 烟台 264001
  • 收稿日期:2025-03-14 接受日期:2025-07-24 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 闫文君 E-mail:81348541@qq.com
  • 作者简介:姜 杰(1990—),男,助理工程师,博士研究生,主要研究方向为人工智能、图像处理
    凌 青(1987—),女,教授,博士,主要研究方向为人工智能、深度学习
    张立民(1966—),男,教授,博士研究生导师,博士,主要研究方向为信号处理及应用
  • 基金资助:
    国家自然科学基金(62371465);山东省青创团队(2022kj084);山东省自然科学基金(ZR2020QF010)资助课题

Tiny objects detection method for unmanned aerial vehicle ship images based on STOD

Jie JIANG(), Wenjun YAN, Qing LING, Limin ZHANG   

  1. Information Fusion Research Institute,Naval Aviation University,Yantai 264001,China
  • Received:2025-03-14 Accepted:2025-07-24 Online:2025-11-25 Published:2025-12-08
  • Contact: Wenjun YAN E-mail:81348541@qq.com

摘要:

针对无人机航拍舰船图像小目标占比高、检测难度大的问题,提出一种舰船微小目标检测(ship tiny object detection,STOD)算法。算法立足于图像特性、舰船特征并结合目标特定场景,重点考虑无人机对STOD过程中的难点问题,针对性地设计了算法模型和网络框架。首先,采用轻量化的单阶段无锚框网络作为主干,然后引入全局注意力机制,强化模型对微小目标的学习能力,随后设计局部跨阶段金字塔聚合网络并强化检测头,提升网络对目标特征的提取能力和检测精度,最后在回归分支中采用基于向量的分布焦点损失,进一步强化对微小目标的检测能力。实验验证和对比分析表明,所提方法对舰船微小目标的检测性能相比于基线模型平均精度整体提升了2.6%,每秒处理帧数可达52.2。对比其他小目标算法检测精度高,实时性好。

关键词: 无人机, 舰船图像, 小目标检测, 深度学习, 全局注意力机制

Abstract:

A ship tiny object detection(STOD )is proposed to address the problem of high proportion of small targets and difficult detection in unmanned aerial vehicle ship images. The algorithm is based on image characteristics, ship features, and combined with target specific scenes, focusing on the difficult problems in unmanned aerial vehicle STOD process. A targeted algorithm model and network framework are designed. Firstly, a lightweight single-stage anchor free network is adopted as the backbone, followed by the introduction of a global attention mechanism to enhance the model’s learning ability for tiny objects. Then, cross-stage partial pyramid aggregation network is designed and the detection head is strengthened to improve the network’s ability to extract target features and detection accuracy. Finally, a vector based distribution focus loss is used in the regression branch to further enhance the detection ability for tiny objects. Experimental verification and comparative analysis indicate that the proposed method improves the detection performance of tiny objects on ships by 2.6% compared to the baseline model average precision, and the frame per second can reach 52.2. Compared with other small target algorithms, it has high detection accuracy and good real-time performance.

Key words: unmanned aerial vehicle (UAV), ship image, tiny objects detection, deep learning, global attention mechanism

中图分类号: