系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2763-2773.doi: 10.12305/j.issn.1001-506X.2025.08.34
• 通信与网络 • 上一篇
收稿日期:
2024-05-14
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
陈亚洲
E-mail:zxllucya@163.com
作者简介:
张晓璐(1993—),女,博士研究生,主要研究方向为复杂电磁环境效应试验与评估基金资助:
Xiaolu ZHANG(), Yazhou CHEN, Min ZHAO
Received:
2024-05-14
Online:
2025-08-25
Published:
2025-09-04
Contact:
Yazhou CHEN
E-mail:zxllucya@163.com
摘要:
针对目前无人机数据链带内电磁干扰效应预测模型难以开展复杂电磁环境下多干扰源干扰效应预测的问题,基于直扩型数据链的干扰效应指数,建立了一种无人机数据链带内电磁干扰效应预测模型。以直扩型无人机数据链为试验对象,由单音干扰和部分频带噪声干扰组合形成多类型干扰信号组合以模拟复杂电磁环境,采用电磁干扰注入方法分别开展带内干扰失锁阈值试验和效应指数试验。结果表明,效应指数的试验值与理论值误差小于0.627 dB,验证了该模型的有效性,同时该模型还适用于部分周期信号干扰效应预测。
中图分类号:
张晓璐, 陈亚洲, 赵敏. 无人机数据链带内电磁干扰效应预测模型与验证[J]. 系统工程与电子技术, 2025, 47(8): 2763-2773.
Xiaolu ZHANG, Yazhou CHEN, Min ZHAO. Prediction method and verification of in-band electromagnetic interference effect for unmanned aerial vehicle data link[J]. Systems Engineering and Electronics, 2025, 47(8): 2763-2773.
表1
双源同类型和异类型干扰注入失锁阈值测试及效应指数试验"
组号 | P1/dBm | P2/dBm | P10/dBm | P20/dBm | 状态 | |||
1 | 1-1 | −59.6 | −58.0 | −58.8 | −53.1 | 1.155 | 0.627 | 失锁 |
1-2 | −60.2 | −57.0 | −58.8 | −53.1 | 1.132 | 0.538 | ||
1-3 | −60.9 | −56.1 | −58.8 | −53.1 | 1.118 | 0.484 | ||
1-4 | −62.1 | −55.5 | −58.8 | −53.1 | 1.043 | 0.184 | ||
1-5 | −62.9 | −54.8 | −58.8 | −53.1 | 1.065 | 0.274 | ||
1-6 | −63.9 | −54.3 | −58.8 | −53.1 | 1.068 | 0.284 | ||
2 | 2-1 | −62.2 | −49.3 | −60.7 | −44.9 | 1.071 | 0.298 | 失锁 |
2-2 | −62.9 | −48.8 | −60.7 | −44.9 | 1.010 | 0.043 | ||
2-3 | −63.9 | −47.5 | −60.7 | −44.9 | 1.028 | 0.121 | ||
2-4 | −64.9 | −46.9 | −60.7 | −44.9 | 1.011 | 0.048 | ||
2-5 | −65.9 | −46.3 | −60.7 | −44.9 | 1.026 | 0.113 | ||
2-6 | −66.9 | −45.9 | −60.7 | −44.9 | 1.034 | 0.146 | ||
3 | 3-1 | −54.1 | −56.5 | −53.4 | −48.3 | 1.002 | 0.011 | 失锁 |
3-2 | −54.9 | −52.3 | −53.4 | −48.3 | 1.106 | 0.438 | ||
3-3 | −55.6 | −51.6 | −53.4 | −48.3 | 1.070 | 0.295 | ||
3-4 | −56.6 | −50.7 | −53.4 | −48.3 | 1.054 | 0.229 | ||
3-5 | −57.2 | −50.1 | −53.4 | −48.3 | 1.078 | 0.324 | ||
3-6 | −57.9 | −49.5 | −53.4 | −48.3 | 1.113 | 0.466 | ||
4 | 4-1 | −46.3 | −60.5 | −45.4 | −53.4 | 1.008 | 0.034 | 失锁 |
4-2 | −47.1 | −58.2 | −45.4 | −53.4 | 1.015 | 0.031 | ||
4-3 | −47.8 | −55.9 | −45.4 | −53.4 | 1.138 | 0.561 | ||
4-4 | −48.7 | −55.2 | −45.4 | −53.4 | 1.128 | 0.525 | ||
4-5 | −49.7 | −54.8 | −45.4 | −53.4 | 1.096 | 0.398 | ||
4-6 | −50.4 | −54.4 | −45.4 | −53.4 | 1.111 | 0.455 |
表3
三源同类型和异类型干扰注入失锁阈值测试及效应指数试验"
组号 | P1/dBm | P2/dBm | P3/dBm | P10/dBm | P20/dBm | P30/dBm | 状态 | |||
1 | 1-1 | −48 | −67.2 | −62.2 | −47 | −54.3 | −54.1 | 1.000 | 0.002 | 失锁 |
1-2 | −48.7 | −69.1 | −58.7 | −47 | −54.3 | −54.1 | 1.056 | 0.236 | ||
1-3 | −49.7 | −68.1 | −56.9 | −47 | −54.3 | −54.1 | 1.104 | 0.428 | ||
1-4 | −49.4 | −68.6 | −57.3 | −47 | −54.3 | −54.1 | 1.091 | 0.379 | ||
1-5 | −51.2 | −66.6 | −56.1 | −47 | −54.3 | −54.1 | 1.070 | 0.294 | ||
1-6 | −51.7 | −60 | −58.1 | −47 | −54.3 | −54.1 | 1.006 | 0.026 | ||
2 | 2-1 | −53.3 | −65.6 | −59.8 | −52.4 | −55.6 | −52 | 1.079 | 0.329 | 失锁 |
2-2 | −54.5 | −65.9 | −56.1 | −52.4 | −55.6 | −52 | 1.099 | 0.410 | ||
2-3 | −55.3 | −64.9 | −55.7 | −52.4 | −55.6 | −52 | 1.057 | 0.240 | ||
2-4 | −57.3 | −64.5 | −54.6 | −52.4 | −55.6 | −52 | 1.002 | 0.009 | ||
2-5 | −57.6 | −64.3 | −54 | −52.4 | −55.6 | −52 | 1.068 | 0.285 | ||
2-6 | −58.6 | −66.8 | −53.6 | −52.4 | −55.6 | −52 | 1.008 | 0.033 | ||
3 | 3-1 | −61 | −63.6 | −62 | −60.1 | −52.6 | −52.8 | 1.012 | 0.054 | 失锁 |
3-2 | −61.7 | −63.2 | −59.2 | −60.1 | −52.6 | −52.8 | 1.008 | 0.035 | ||
3-3 | −62.6 | −64.2 | −57.1 | −60.1 | −52.6 | −52.8 | 1.003 | 0.013 | ||
3-4 | −63.8 | −64.8 | −55.6 | −60.1 | −52.6 | −52.8 | 1.012 | 0.050 | ||
3-5 | −64.5 | −63.5 | −55.3 | −60.1 | −52.6 | −52.8 | 1.007 | 0.029 | ||
3-6 | −65.1 | −64.6 | −54.8 | −60.1 | −52.6 | −52.8 | 1.010 | 0.044 |
表5
单音干扰和调幅信号干扰注入失锁阈值测试及效应指数试验"
参数 | 组号 | 干扰1 | 干扰2 | τ | 10lgτ/dB | 状态 | |||||||
频率 | / | fs+2 | fs+1 | fs+1.5 | fs+0.5 | fs+2.5 | fs−0.5 | / | / | / | |||
Pi0/dBm | / | −54.0 | −61.3 | −58.3 | −55.0 | −53.8 | −54.3 | / | / | / | |||
Pi /dBm | 1 | −60.2 | −62.7 | −72.6 | −72.3 | −81.5 | −81.9 | 1.024 | 0.101 | 失锁 | |||
2 | −59.3 | −63.0 | −73.2 | −72.9 | −81.8 | −82.1 | 1.023 | 0.099 | 失锁 | ||||
3 | −57.2 | −64.3 | −74.3 | −74.1 | −83.1 | −82.9 | 1.020 | 0.085 | 失锁 | ||||
4 | −55.8 | −66.0 | −76.1 | −76.5 | −83.8 | −83.8 | 1.025 | 0.109 | 失锁 | ||||
5 | −54.7 | −69.9 | −79.3 | −79.5 | −86.1 | −86.3 | 1.002 | 0.008 | 失锁 |
表6
单音干扰和调幅信号干扰注入验证试验"
参数 | 组号 | 干扰1 | 干扰2 | τ | 10lgτ/dB | 状态 | |||||||
频率 | / | fs+2 | fs+1 | fs+1.5 | fs+0.5 | fs+2.5 | fs−0.5 | / | / | / | |||
功率/dBm | 1+1 | −59.2 | −62.7 | −72.6 | −72.3 | −81.5 | −81.9 | 1.086 | 0.357 | 失锁 | |||
2+1 | −58.3 | −63.0 | −73.2 | −72.9 | −81.8 | −82.1 | 1.099 | 0.411 | 失锁 | ||||
3+1 | −56.2 | −64.3 | −74.3 | −74.1 | −83.1 | −82.9 | 1.144 | 0.583 | 失锁 | ||||
4+1 | −54.8 | −66.0 | −76.1 | −76.5 | −83.8 | −83.8 | 1.196 | 0.779 | 失锁 | ||||
5+1 | −53.7 | −69.9 | −79.3 | −79.5 | −86.1 | −86.3 | 1.222 | 0.872 | 失锁 | ||||
功率/dBm | 1-1 | −61.2 | −62.7 | −72.6 | −72.3 | −81.5 | −81.9 | 0.974 | −0.114 | 未失锁 | |||
2-1 | −60.3 | −63.0 | −73.2 | −72.9 | −81.8 | −82.1 | 0.962 | −0.167 | 未失锁 | ||||
3-1 | −58.2 | −64.3 | −74.3 | −74.1 | −83.1 | −82.9 | 0.921 | −0.356 | 未失锁 | ||||
4-1 | −56.8 | −66.0 | −76.1 | −76.5 | −83.8 | −83.8 | 0.889 | −0.509 | 未失锁 | ||||
5-1 | −55.7 | −69.9 | −79.3 | −79.5 | −86.1 | −86.3 | 0.827 | −0.826 | 未失锁 |
1 |
ZHANG C Y, ZHANG W Z, WANG W, et al. Research challenges and opportunities of UAV millimeter-wave communications[J]. IEEE Wireless Communications, 2019, 26 (1): 58- 62.
doi: 10.1109/MWC.2018.1800214 |
2 |
XU T, CHEN Y Z, ZHAO M, et al. Adaptive EMS test design method on UAV data link based on Bayesian optimization[J]. IEEE Trans. on Electromagnetic Compatibility, 2023, 65 (3): 716- 724.
doi: 10.1109/TEMC.2023.3261879 |
3 | WANG X H, GUO H Z, WANG J B, et al. Predicting the health status of an unmanned aerial vehicles data-link system based on a Bayesian network[J]. Sensors, 2018, 18 (11): 3916. |
4 |
GU H Q, LIU X X, XU L, et al. DSSS signal detection based on CNN[J]. Sensors, 2023, 23 (15): 6691.
doi: 10.3390/s23156691 |
5 | CAI S X, LI Y Y, ZHU H, et al. A novel electromagnetic compatibility evaluation method for receivers working under pulsed signal interference environment[J]. Applied Sciences, 2021, 11 (20): 9454. |
6 |
LIU F, LIU J, FENG Y X. Incremental-data stealth-transmission method in DSSS[J]. Wireless Networks, 2021, 27 (4): 2441- 2449.
doi: 10.1007/s11276-021-02590-6 |
7 |
BAEK H, LIM J. Design of future UAV-relay tactical data link for reliable UAV control and situational awareness[J]. IEEE Communications Magazine, 2018, 56 (10): 144- 150.
doi: 10.1109/MCOM.2018.1700259 |
8 | QU X, LI W J. Simulation and analysis of DS-SS anti-jamming performance based on VHDL[C]//Proc. of the International Conference on Industrial Control and Electronics Engineering, 2012. |
9 |
李振东, 谭维凤, 康成斌, 等. 直接序列扩频系统抗干扰能力研究[J]. 电子与信息学报, 2021, 43 (1): 116- 123.
doi: 10.11999/JEIT191007 |
LI Z D, TAN W F, KANG C B, et al. Research on anti-interference ability of direct sequence spread spectrum system[J]. Journal of Electronics & Information Technology, 2021, 43 (1): 116- 123.
doi: 10.11999/JEIT191007 |
|
10 | LAKSHMI M L S N S, ANUDEEPSAGAR K, NIRANJANPRASAD. Analysis of DSSS performance under communication-jamming environment[C]//Proc. of the International Conference on Electronics and Communication Systems, 2014. |
11 | 许彤, 陈亚洲, 王玉明, 等. 无人机数据链带内连续波电磁干扰效应研究[J]. 北京理工大学学报, 2021, 41 (10): 1084- 1094. |
XU T, CHEN Y Z, WANG Y M, et al. Research on in-band continuous wave electromagnetic interference effect of unmanned aerial vehicle data link[J]. Transactions of Beijing Institute of Technology, 2021, 41 (10): 1084- 1094. | |
12 | 许彤, 陈亚洲, 王玉明, 等. 无人机数据链宽带白噪声电磁干扰效应研究[J]. 系统工程与电子技术, 2023, 45 (7): 1965- 1973. |
XU T, CHEN Y Z, WANG Y M, et al. Research on wideband white noise electromagnetic interference effect of UAV data link[J]. Systems Engineering and Electronics, 2023, 45 (7): 1965- 1973. | |
13 | CHEN Y Z, ZHANG D X, CHENG E W, et al. Investigation on susceptibility of UAV to radiated IEMI[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility and IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, 2018. |
14 | 张冬晓, 陈亚洲, 程二威, 等. 无人机信息链路电磁干扰效应规律研究[J]. 北京理工大学学报, 2019, 39 (7): 756- 762. |
ZHANG D X, CHEN Y Z, CHENG E W, et al. Effects of electromagnetic interference (EMI) on information link of UAV[J]. Transactions of Beijing Institute of Technology, 2019, 39 (7): 756- 762. | |
15 |
XIN M R, CAI Z R. A feature fusion-based communication jamming recognition method[J]. Wireless Networks, 2023, 29 (7): 2993- 3004.
doi: 10.1007/s11276-023-03272-1 |
16 |
ZHAO H Z, WEI G H, PAN X D. Evaluation method of noise electromagnetic radiation interference effect[J]. IEEE Trans. on Electromagnetic Compatibility, 2023, 65 (1): 69- 78.
doi: 10.1109/TEMC.2022.3224791 |
17 |
XU H, CHENG Y F, WANG P Y. Jamming detection in broadband frequency hopping systems based on multi-segment signals spectrum clustering[J]. IEEE Access, 2021, 9, 29980- 29992.
doi: 10.1109/ACCESS.2021.3059733 |
18 |
WANG P Y, CHENG Y F, PENG Q H, et al. Low-bitwidth convolutional neural networks for wireless interference identification[J]. IEEE Trans. on Cognitive Communications and Networking, 2022, 8 (2): 557- 569.
doi: 10.1109/TCCN.2022.3149092 |
19 | 王鹏宇. 基于深度学习的无线通信干扰识别技术研究[D]. 成都: 电子科技大学, 2023. |
WANG P Y. Research on wireless communication interference identification technology based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
20 |
周胜文, 沙明辉, 胡小春. 基于梳状谱调制和间歇采样重复转发的复合干扰[J]. 系统工程与电子技术, 2021, 43 (12): 3495- 3501.
doi: 10.12305/j.issn.1001-506X.2021.12.10 |
ZHOU S W, SHA M H, HU X C. Composite jamming based on comb spectrum modulation and interrupted sampling repetitive repeater[J]. Systems Engineering and Electronics, 2021, 43 (12): 3495- 3501.
doi: 10.12305/j.issn.1001-506X.2021.12.10 |
|
21 | MEN Y, WEN A J, WANG Y H, et al. Photonic-assisted wideband radar jamming signal generator with flexible tunability[J]. Journal of Lightwave Technology, 2024, 42 (19): 6808- 6815. |
22 |
HAN H, LI W, FENG Z B, et al. Proceed from known to unknown: jamming pattern recognition under open-set setting[J]. IEEE Wireless Communications Letters, 2022, 11 (4): 693- 697.
doi: 10.1109/LWC.2021.3140145 |
23 | 陈齐乐, 杨瑾, 乔彩霞, 等. 基于复迭代滤波的连续波调频雷达同频非相参调频干扰抑制方法[J]. 兵工学报, 2024, 45 (12): 4589- 4596. |
CHEN Q L, YANG J, QIAO C X, et al. Interference mitigation approach for FMCW radar based on complex iterative filtering[J]. Acta Armamentarii, 2024, 45 (12): 4589- 4596. | |
24 | 樊昌信, 曹丽娜. 通信原理[M]. 第7版. 北京: 国防工业出版社, 2012. |
FAN C X, CAO L N. Principles of communications[M]. 7th ed. Beijing: National Defense Industry Press, 2012. | |
25 | OPPENHEIM A, WILLSKY A, NAWAB S. Signals and systems[M]. 2nd ed. Upper Saddle River, N. J: Pearson, 1996. |
26 | XU H, CHENG Y F, LIANG J D, et al. A jamming recognition algorithm based on deep neural network in satellite navigation system[C]//Proc. of the China Satellite Navigation Conference, 2020: 701–711. |
27 |
ZHANG D X, ZHAO M, CHENG E W, et al. GPR-based EMI prediction for UAV’s dynamic datalink[J]. IEEE Trans. on Electromagnetic Compatibility, 2021, 63 (1): 19- 29.
doi: 10.1109/TEMC.2020.3000919 |
28 |
XU T, CHEN Y Z, WANG Y M, et al. EMI threat assessment of UAV data link based on multi-task CNN[J]. Electronics, 2023, 12 (7): 1631- 1642.
doi: 10.3390/electronics12071631 |
29 | 许彤. 无人机数据链多源电磁干扰实验与态势认知方法研究[D]. 石家庄: 陆军工程大学, 2023. |
XU T. Research on multi-source EMI experiment and situation cognition method of UAV data link[D]. Shijiazhuang: Army Engineering University, 2023. | |
30 | 闫云斌, 崔雪炜, 王永川, 等. 无人机数据链系统抗干扰性能评估方法研究[J]. 海军工程大学学报, 2017, 29 (5): 92- 96. |
YAN Y B, CUI X W, WANG Y C, et al. Research on anti-jamming evaluation method for unmanned aerial vehicle data link[J]. Journal of Naval University of Engineering, 2017, 29 (5): 92- 96. | |
31 |
孙志国, 肖硕, 吴毅杰, 等. 面向认知通信防护的穿透式干扰效能评估方法[J]. 通信学报, 2023, 44 (11): 161- 172.
doi: 10.11959/j.issn.1000-436x.2023195 |
SUN Z G, XIAO S, WU Y J, et al. Evaluation method of penetrating jamming effectiveness for cognitive communication protection[J]. Journal on Communication, 2023, 44 (11): 161- 172.
doi: 10.11959/j.issn.1000-436x.2023195 |
|
32 | 李梦园. Link-16波形同步技术研究[D]. 成都: 电子科技大学, 2023. |
LI M Y. Research on Link-16 waveform synchronization technology[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
33 |
SUN J N, PAN X D, LU X F, et al. Test method of bulk current injection for high field intensity electromagnetic radiated susceptibility into shielded wire[J]. IEEE Trans. on Electromagnetic Compatibility, 2022, 64 (2): 275- 285.
doi: 10.1109/TEMC.2021.3120018 |
34 |
SPADACINI G, GRASSI F, PIGNARI S A, et al. Bulk current injection as an alternative radiated susceptibility test enforcing a statistically quantified overtesting margin[J]. IEEE Trans. on Electromagnetic Compatibility, 2018, 60 (5): 1270- 1278.
doi: 10.1109/TEMC.2018.2810074 |
[1] | 张庆龙, 陈亚洲, 于凤全, 张毅, 韩芳林, 周玲宇. 卫星导航接收机带外电磁干扰效应研究[J]. 系统工程与电子技术, 2024, 46(8): 2563-2571. |
[2] | 韦烜, 刘志华, 李青, 何晓明, 黄君雅. 大型IP网络流量矩阵分析预测的探讨研究[J]. 系统工程与电子技术, 2024, 46(6): 2164-2173. |
[3] | 许彤, 陈亚洲, 王玉明, 赵敏. 无人机数据链宽带白噪声电磁干扰效应研究[J]. 系统工程与电子技术, 2023, 45(7): 1965-1973. |
[4] | 朱峰, 蒋倩倩, 林川, 杨啸. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43(9): 2400-2406. |
[5] | 卢中昊, 徐军, 林铭团. 电磁辐射发射现场测试中基于空域对消的背景电磁干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(7): 1433-1438. |
[6] | 朱峰, 翁文雯, 谢雨轩, 杨晓嘉, 叶家全. 多径效应对航向信标系统电磁环境影响分析[J]. 系统工程与电子技术, 2019, 41(12): 2703-2709. |
[7] | 张薇玮, 丁文锐, 刘春辉. 复杂环境中无人机数据链干扰效果预测方法[J]. 系统工程与电子技术, 2016, 38(4): 760-766. |
[8] | 赵建忠, 徐廷学, 叶文, 张磊. 基于数据融合和改进MUGM(1,m,w)的导弹装备故障预测[J]. 系统工程与电子技术, 2015, 37(4): 832-837. |
[9] | 郭晓君,刘思峰,方志耕. 基于合成灰数灰度的区间灰数自忆性预测模型[J]. 系统工程与电子技术, 2014, 36(6): 1124-1129. |
[10] | 王大鹏, 汪秉文, 李睿凡. 考虑合成灰数灰度性质的改进区间灰数预测模型[J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1013-1017. |
[11] | 刘瑞,康锐,张侦英,黄兆东. 装备研制阶段保障设备配置效率预测模型[J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1040-. |
[12] | 曾波. 基于核和灰度的区间灰数预测模型[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 821-824. |
[13] | 檀甲甲,张建秋. 跟踪机动目标的雷达波形选择新方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(3): 515-522. |
[14] | 石春生,孟大鹏. 基于SVM的高技术装备制造业供应风险预测模型[J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1667-1671. |
[15] | 荆献勇,肖明清,余文波,赵鑫. 改进免疫算法在预测过程神经网络中的应用[J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2136-2140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||