系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 3058-3065.doi: 10.12305/j.issn.1001-506X.2025.09.27

• 制导、导航与控制 • 上一篇    

基于异步搜寻制导的机/船协同事件触发控制

张国庆1, 徐轶晖1, 李纪强1,*, 张显库1, 邱斌2   

  1. 1. 大连海事大学航海学院,辽宁 大连 116026
    2. 桂林理工大学计算机科学与工程学院,广西 桂林 541004
  • 收稿日期:2024-09-02 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 李纪强
  • 作者简介:张国庆(1987—),男,教授,博士,主要研究方向为神经网络控制、鲁棒控制
    徐轶晖(2001—),男,硕士研究生,主要研究方向为船舶运动控制、机/船协同制导与控制
    张显库(1968—),男,教授,博士,主要研究方向为船舶运动控制、复杂系统建模与仿真
    邱 斌(1987—),男,副教授,博士,主要研究方向为智慧交通、工业物联网等领域的RIS辅助通信、边缘计算、人工智能
  • 基金资助:
    国家优秀青年科学基金(52322111);国家自然科学基金(52171291);辽宁省应用基础研究计划(2023JH2/101600039);辽宁省“兴辽英才计划”青年拔尖人才(XLYC2203129);大连市杰出青年科技人才项目(2022RJ07);中央高校基本科研业务费专项资金(3132023502)资助课题

Event-triggered control for USV-UAV based on asynchronous search guidance

Guoqing ZHANG1, Yihui XU1, Jiqiang LI1,*, Xianku ZHANG1, Bin QIU2   

  1. 1. Navigation College,Dalian Maritime University,Dalian 116026,China
    2. School of Computer Science and Engineering,Guilin University of Technology,Guilin 541004,China
  • Received:2024-09-02 Online:2025-09-25 Published:2025-09-16
  • Contact: Jiqiang LI

摘要:

为解决传统欠驱动船舶-无人机(underactuated surface vessel-unmanned aerial vehicle, USV-UAV)搜寻任务中机船位置固定的局限以及控制系统中存在的控制输入频繁抖振、模型非线性参数不确定等问题,提出一种基于异步搜寻制导的无人机船事件触发控制算法。首先,设计一种异步搜寻制导方法,利用L1虚拟船舶(L1-based virtual surface vessel,L1VV)和L1虚拟无人机(L1-based virtual unmanned aerial vehicle,L1VA)生成满足搜寻要求的制导路径。其次,在径向基函数神经网络(radius based function neural network,RBF-NN)基础上结合最小学习参数(minimal learning parameter,MLP)方法对系统未知模型参数的非线性项进行在线逼近并化简。在控制律的设计上,应用动态事件触发控制并结合干扰补偿机制以实现在满足精度的同时,降低控制输入的更新频率。最后,利用李雅普诺夫稳定性理论证明所提控制算法满足半全局一致最终有界稳定,并进一步在仿真实验中验证了所提算法的有效性。

关键词: 船舶-无人机, 海事搜寻, 径向基函数神经网络, 事件触发控制

Abstract:

To address the limitations of fixed positions in traditional underactuated surface vessel-unmanned aerial vehicle (USV-UAV) search tasks, as well as issues such as frequent chattering of control inputs and uncertainty model nonlinear parameters in the control system, an event-triggered control algorithm for the USV-UAV based on the asynchronous search guidance is proposed. Firstly, an asynchronous search guidance method is designed, which uses an L1-based virtual surface vessel (L1VV) and an L1-based virtual unmanned aerial vehicle (L1VA) to generate guidance paths that satisfy the search requirements. Secondly, the radius based function neural network (RBF-NN) is introduced combined with the minimal learning parameter (MLP) method to approximate and simplify the nonlinear terms of unknown model parameters of the system. In the design of control laws, dynamic event-triggered control with a disturbance compensation mechanism is applied to achieve the accuracy and reduce the update frequency of control input. Finally, the proposed control algorithm is proved that satisfies the semi-global uniform ultimate bounded stability by using Lyapunov stability theory, and its effectiveness is further validated through simulation experiments.

Key words: underactuated surface vessel-unmanned aerial vehicle (USV-UAV), maritime search, radius based function neural network (RBF-NN), event-triggered control

中图分类号: