1 |
LIANG H J, CHEN L, PAN Y N, et al. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative antagonistic interactions[J]. IEEE Trans. on Fuzzy Systems, 2023, 31 (4): 1362- 1376.
doi: 10.1109/TFUZZ.2022.3200730
|
2 |
李志豪, 张国庆, 李纪强, 等. 基于AIS轨迹重现任务的船舶路径跟踪迭代控制[J]. 中国舰船研究, 2024. DOI: 10.19693/j.issn.1673-3185.03924.
|
|
LI Z H, ZHANG G Q, LI J Q, et al. Iterative path following control of underactuated ships based on AIS trajectory reproduction tasks[J]. Chinese Journal of Ship Research, 2024. DOI: 10.19693/j.issn.1673-3185.03924.
|
3 |
陈霄, 刘忠, 张建强, 等. 基于非对称模型的欠驱动USV自适应路径跟踪控制[J]. 系统工程与电子技术, 2018, 40 (1): 139- 150.
doi: 10.3969/j.issn.1001-506X.2018.01.21
|
|
CHEN X, LIU Z, ZHANG J Q, et al. Adaptive path following control of the underactuated USV based on the asymmetric model[J]. Systems Engineering and Electronics, 2018, 40 (1): 139- 150.
doi: 10.3969/j.issn.1001-506X.2018.01.21
|
4 |
FOSSEN T, PETTERSEN K, GALEAZZI R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Trans. on Control Systems Technology, 2015, 23 (2): 820- 827.
doi: 10.1109/TCST.2014.2338354
|
5 |
YU Y L, GUO C, LI T S. Finite-time LOS path following of unmanned surface vessels with time-varying sideslip angles and input saturation[J]. IEEE/ASME Trans. on Mechatronics, 2022, 27 (1): 463- 474.
doi: 10.1109/TMECH.2021.3066211
|
6 |
MOHAMMED I, GOPALAM S, COLLINGS I, et al. Closed form approximations for UAV line-of-sight probability in urban environments[J]. IEEE Access, 2023, 11, 40162- 40174.
doi: 10.1109/ACCESS.2023.3267808
|
7 |
LI J Q, ZHANG G Q, SHAN Q H, et al. A novel cooperative design for USV-UAV systems: 3-D mapping guidance and adaptive fuzzy control[J]. IEEE Trans. on Control of Network Systems, 2023, 10 (2): 564- 574.
doi: 10.1109/TCNS.2022.3220705
|
8 |
LI J Q, ZHANG G Q, ZHANG X K, et al. Integrating dynamic event-triggered and sensor-tolerant control: application to USV-UAVs cooperative formation system for maritime parallel search[J]. IEEE Trans. on Intelligent Transportation Systems, 2024, 25 (2): 3986- 3998.
|
9 |
董蛟, 刘忠, 张建强, 等. 基于干扰观测的欠驱动无人艇自适应航迹跟踪控制算法[J]. 系统工程与电子技术, 2019, 41 (7): 1606- 1616.
doi: 10.3969/j.issn.1001-506X.2019.07.23
|
|
DONG J, LIU Z, ZHANG J Q, et al. Adaptive course tracking control of underactuated USV based on disturbance observation[J]. Systems Engineering and Electronics, 2019, 41 (7): 1606- 1616.
doi: 10.3969/j.issn.1001-506X.2019.07.23
|
10 |
ALQAISI W, GHOMMAM J, ALAZZAM A, et al. Three-loop uncertainties compensator and sliding mode quadrotor control[J]. Computers and Electrical Engineering, 2020, 81, 106507.
doi: 10.1016/j.compeleceng.2019.106507
|
11 |
FANG X, ZHOU J L, WEN G H. Location game of multiple unmanned surface vessels with quantized communications[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69 (3): 1322- 1326.
|
12 |
DUAN H B, YUAN Y, ZENG Z G. Distributed robust learning control for multiple unmanned surface vessels with fixed-time prescribed performance[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2024, 54 (2): 787- 799.
doi: 10.1109/TCYB.2022.3229430
|
13 |
ZHENG F Y, FAN T, XU M Y, et al. Adaptive fractional order non-singular terminal sliding mode anti-disturbance control for advanced layout carrier-based UAV[J]. Aerospace Science and Technology, 2023, 139, 108367.
doi: 10.1016/j.ast.2023.108367
|
14 |
ZHAI G Y, ZHANG J D, WU S Y, et al. Predefined-time tracking control of unmanned surface vehicle under complex time-varying disturbances[J]. Electronics, 2024, 13 (8): 1510.
doi: 10.3390/electronics13081510
|
15 |
ZHANG G Q, CAO Q, HUANG C F, et al. Adaptive neural quantized formation control for heterogeneous underactuated ships with the MVS guidance[J]. Ocean Engineering, 2024, 294, 116760.
doi: 10.1016/j.oceaneng.2024.116760
|
16 |
LEE M Y, CHEN B S, CHANG Y, et al. Stochastic robust team formation tracking design of multi-VOLT-UAV networked control system in smart city under time-varying delay and random fluctuation[J]. IEEE Access, 2020, 8, 131310- 131326.
doi: 10.1109/ACCESS.2020.3009751
|
17 |
ZHANG G Q, LIU S, HUANG J S, et al. Dynamic event-triggered path-following control of underactuated surface vehicle with the experiment verification[J]. IEEE Trans. on Vehicular Technology, 2022, 71 (10): 10415- 10425.
doi: 10.1109/TVT.2022.3184305
|
18 |
ZHAO Z Y, JIN X Z. Adaptive neural network-based sliding mode tracking control for agricultural quadrotor with variable payload[J]. Computers and Electrical Engineering, 2022, 103, 108336.
doi: 10.1016/j.compeleceng.2022.108336
|
19 |
WANG Y B, ZHAO S L, WANG Q L. Cooperative control of velocity and heading for unmanned surface vessel based on twin delayed deep deterministic policy gradient with an integral compensator[J]. Ocean Engineering, 2023, 288 (1): 115943.
|
20 |
XING Y S, ZHANG G Q, LI J Q. Adaptive fuzzy quantized control for a cooperative USV-UAV system based on asynchronous separate guidance[J]. Journal of Marine Science and Engineering, 2023, 11 (12): 2331.
doi: 10.3390/jmse11122331
|
21 |
YU D X, MA S Z, LIU Y J, et al. Finite-time adaptive fuzzy backstepping control for quadrotor UAV with stochastic disturbance[J]. IEEE Trans. on Automation Science and Engineering, 2024, 21 (2): 1335- 1345.
doi: 10.1109/TASE.2023.3282661
|
22 |
ZHANG G Q, ZHANG X K. Concise robust adaptive path-following control of underactuated ships using DSC and MLP[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (4): 685- 694.
doi: 10.1109/JOE.2013.2280822
|
23 |
LI J Q, ZHANG G Q, ZHANG W J, et al. Cooperative path following control of USV-UAVs considering low design complexity and command transmission requirements[J]. IEEE Trans. on Intelligent Vehicles, 2024, 9 (1): 715- 724.
doi: 10.1109/TIV.2023.3317336
|
24 |
DO K. Practical formation control of multiple underactuated ships with limited sensing ranges[J]. Robotics and Autonomous Systems, 2011, 59 (6): 457- 471.
doi: 10.1016/j.robot.2011.03.003
|
25 |
ELIKER K, ZHANG W D. Finite-time adaptive integral backstepping fast terminal sliding mode control application on quadrotor UAV[J]. International Journal of Control Automation and Systems, 2020, 18 (2): 415- 430.
doi: 10.1007/s12555-019-0116-3
|
26 |
李纪强, 张国庆, 黄晨峰, 等. 考虑执行器故障的无人帆船事件触发控制[J]. 系统工程与电子技术, 2022, 44 (1): 242- 249.
doi: 10.12305/j.issn.1001-506X.2022.01.30
|
|
LI J Q, ZHANG G Q, ZHANG X K, et al. Event-triggered control for unmanned sailboat with actuator failures[J]. Systems Engineering and Electronics, 2022, 44 (1): 242- 249.
doi: 10.12305/j.issn.1001-506X.2022.01.30
|
27 |
XU B, SHOU Y X. Composite learning control of MIMO systems with applications[J]. IEEE Trans. on Industrial Electronics, 2018, 65 (8): 6414- 6424.
doi: 10.1109/TIE.2018.2793207
|
28 |
CHANDR S, GAUR P, PATHAK D. Radial basis function neural network based maximum power point tracking for photovoltaic brushless DC motor connected water pumping system[J]. Computers and Electrical Engineering, 2020, 86, 106730.
doi: 10.1016/j.compeleceng.2020.106730
|
29 |
WEN C Y, ZHOU J, LIU Z T, et al. Robust adaptive control of uncertain nonlinear systems in presence of input saturation and external disturbance[J]. IEEE Trans. on Automatic Control, 2011, 56 (7): 1672- 1678.
doi: 10.1109/TAC.2011.2122730
|
30 |
ZHANG G Q, LIU S, ZHANG X K, et al. Event-triggered cooperative formation control for autonomous surface vehicles under the maritime search operation[J]. IEEE Trans. on Intelligent Transportation Systems, 2022, 23 (11): 21392- 21404.
doi: 10.1109/TITS.2022.3181141
|
31 |
黄晨峰, 张显库, 张国庆, 等. 基于自适应扰动观测器的自主船舶协同路径跟踪控制[J]. 控制理论与应用, 2020, 37 (11): 2312- 2320.
|
|
HUANG C F, ZHANG X K, ZHANG G Q, et al. Adaptive disturbance observer based cooperative path-following control for autonomous surface vessels[J]. Control Theory and Applications, 2020, 37 (11): 2312- 2320.
|