系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 242-249.doi: 10.12305/j.issn.1001-506X.2022.01.30

• 制导、导航与控制 • 上一篇    下一篇

考虑执行器故障的无人帆船事件触发控制

李纪强1, 张国庆1,*, 黄晨峰1, 张卫东2   

  1. 1. 大连海事大学航海学院, 辽宁 大连 116026
    2. 上海交通大学自动化系, 上海 200240
  • 收稿日期:2021-01-11 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 张国庆
  • 作者简介:李纪强(1993—), 男, 博士研究生, 主要研究方向为帆船控制、自适应神经控制、事件触发控制|张国庆(1987—), 男, 副教授, 博士, 主要研究方向为神经网络控制、事件触发控制及在海洋工程领域的应用|黄晨峰(1992—), 男, 博士研究生, 主要研究方向为船舶运动控制、鲁棒自适应控制、复杂系统建模及仿真|张卫东(1967—), 男, 教授, 博士, 主要研究方向为过程控制、鲁棒控制及在海洋航行器中的应用
  • 基金资助:
    国家自然科学基金(51909018);国家自然科学基金(52171291);辽宁省百千万人才计划(2021BQWB64);大连市科技创新基金(2019J12GX026);大连市重点研究领域创新团队支持计划(2020RT08);中央高校基本科研业务费专项资金(3132021132);中央高校基本科研业务费专项资金(3132021340)

Event-triggered control for unmanned sailboat with actuator failures

Jiqiang LI1, Guoqing ZHANG1,*, Chenfeng HUANG1, Weidong ZHANG2   

  1. 1. Navigation College, Dalian Maritime University, Dalian 116026, China
    2. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-01-11 Online:2022-01-01 Published:2022-01-19
  • Contact: Guoqing ZHANG

摘要:

针对实际海洋环境下, 无人帆船在艏向跟踪控制任务中存在的模型参数未知、控制输入频繁抖振和执行器磨损等问题, 提出一种考虑执行器故障的无人帆船事件触发控制算法。首先, 采用径向基函数神经网络(radius based function neural networks, RBF-NNs)对系统的未知模型参数进行在线逼近。其次, 在无人帆船艏向数学模型中引入执行器故障模型, 并且在艏向控制器设计中考虑帆结构造成的转船力矩, 设计基于事件触发机制的艏向控制律来减少控制输入的频繁抖振和执行器磨损。最后, 通过李雅普诺夫稳定性判据证明了所提控制算法满足半全局一致有界(semi-global uniform ultimate bounded, SGUUB)稳定。数值仿真结果表明, 相比于传统的艏向控制算法, 所提算法能够在保证艏向控制性能的基础上, 极大地降低控制输入的频繁抖振和减少执行器的磨损。

关键词: 无人帆船, 径向基函数神经网络, 执行器故障, 事件触发控制

Abstract:

Aiming at the heading control problem for the unmanned sailboat with the unknown model parameters, the chattering frequently of control input and the actuator wear under the practical marine environment, an event-triggered control algorithm with the actuator failures is proposed. Firstly, the radius based function neural networks (RBF-NNs) is introduced to approximated online the unknown model parameters of the system. Secondly, the actuator failure model is introduced into the heading mathematical model of unmanned sailboat, and the turning torque caused by sail structure is considered in the design of heading controller. A heading control law based on event triggering mechanism is designed to reduce the frequent chattering of control input and actuator wear. Finally, through the Lyapunov stability criterion, it is proved that the proposed control algorithm satisfies semi-global uniform ultimate bounded (SGUUB) stability. Numerical simulation results show that compared with the traditional heading control algorithm, the proposed algorithm can greatly reduce the frequent chattering of control input and the wear of actuator on the basis of ensuring the heading control performance.

Key words: unmanned sailboat, radius based function neural networks (RBF-NNs), actuator failures, event-triggered control

中图分类号: