1 |
CARTER W E , CARTE M S . The age of sail: a time when the fortunes of nations and lives of seamen literally turned with the winds their ships encountered at sea[J]. Journal of Navigation, 2019, 63 (7): 717- 731.
|
2 |
ARREDONDO A , VIOLA I M . The leading-edge vortex of yacht sails[J]. Ocean Engineering, 2018, 159 (2): 552- 562.
|
3 |
TAGLIAFERRI F , VIOLA I M . A real-time strategy decision program for sailing yacht races[J]. Ocean Engineering, 2017, 134 (4): 129- 139.
|
4 |
ABRIL J , SALOM J , CALVO O . Fuzzy control of a sailboat[J]. International Journal of Approximate Reasoning, 1997, 16 (4): 359- 375.
|
5 |
WILLE K L, HASSANI V, SPRENGER F. Modeling and course control of sailboats[C]//Proc. of the 10th IFAC Conference on Control Applications in Marine Systems, 2016: 532-539.
|
6 |
ZHOU L, CHEN K, CHEN Z, et al. Course control of unmanned sailboat based on BAS-PID algorithm[C]//Proc. of the International Conference on System Science and Engineering, 2020.
|
7 |
XIAO L , JOUFFROY J . Modeling and nonlinear heading control of sailing yachts[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (2): 256- 268.
doi: 10.1109/JOE.2013.2247276
|
8 |
ZHENG Z W , FEROSKHAN M . Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances[J]. IEEE Trans.on Mechatronics, 2017, 22 (6): 2564- 2575.
doi: 10.1109/TMECH.2017.2756110
|
9 |
LI Y M , QU F , TONG S C . Observer-based fuzzy adaptive finite-time containment control of nonlinear multi-agent systems with input delay[J]. IEEE Trans.on Cybernetics, 2021, 56 (1): 126- 137.
|
10 |
贺宏伟, 邹早建, 曾智华. 欠驱动水面船舶的自适应神经网络-滑模路径跟随控制[J]. 上海交通大学学报, 2020, 54 (9): 890- 897.
|
|
HE H W , ZOU Z J , ZENG Z H . Adaptive NN-SM control for path following of underactuated surface vessels[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (9): 890- 897.
|
11 |
HE W , YIN Z , SUN C Y . Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function[J]. IEEE Trans.on Cybernetics, 2017, 47 (7): 1641- 1651.
doi: 10.1109/TCYB.2016.2554621
|
12 |
ZHANG G Q , LI J Q , LI B , et al. Improved integral LOS guidance and path-following control for an unmanned robot sailboat via the robust neural damping technique[J]. The Journal of Navigation, 2019, 72 (6): 1378- 1398.
doi: 10.1017/S0373463319000353
|
13 |
PLUMET F , PETRES C , ROMERO M , et al. Toward an autonomous sailing boat[J]. IEEE Journal of Oceanic Engineering, 2015, 40 (2): 397- 407.
doi: 10.1109/JOE.2014.2321714
|
14 |
张国庆, 李纪强, 王文新, 等. 基于速度调节的无人帆船机器人自适应艏向保持控制[J]. 控制理论与应用, 2020, 37 (11): 2383- 2390.
doi: 10.7641/CTA.2020.90700
|
|
ZHANG G Q , LI J Q , WANG W X , et al. Adaptive course- keeping control for unmanned sailboat robot with the speed regu- lating mechanism[J]. Control Theory & Applications, 2020, 37 (11): 2383- 2390.
doi: 10.7641/CTA.2020.90700
|
15 |
DENG Y , ZHANG X K , ZHANG G Q . Line-of-sight-based guidance and adaptive neural path-following control for sailboats[J]. IEEE Journal of Oceanic Engineering, 2020, 45 (4): 1177- 1189.
doi: 10.1109/JOE.2019.2923502
|
16 |
WANG W , WEN C Y , HUANG J S , et al. Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults[J]. Automatica, 2019, 111, 108667.
|
17 |
HUANG J S , WANG W , WEN C Y , et al. Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering[J]. IEEE Trans.on Automatic Control, 2020, 65 (1): 318- 324.
doi: 10.1109/TAC.2019.2912517
|
18 |
ZHANG C H , YANG G H . Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures[J]. IEEE Trans.on Cybernetics, 2018, 50 (1): 201- 210.
|
19 |
XING L T , WEN C Y , LIU Z T , et al. Adaptive compensation for actuator failures with event-triggered input[J]. Automatica, 2017, 85, 129- 136.
doi: 10.1016/j.automatica.2017.07.061
|
20 |
ZHANG G Q , LI J Q , YU W , et al. Event-triggered robust neural control for unmanned sail-assisted vehicles subject to actuator failures[J]. Ocean Engineering, 2020, 216 (11): 107754.
|
21 |
DO K D . Practical control of underactuated ships[J]. Ocean Engineering, 2010, 37 (9): 1111- 1119.
|
22 |
XIANG X B , YU C , LAPIERRE L , et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20 (20): 572- 586.
|
23 |
SUN Z J , ZHANG G Q , QIAO L , et al. Robust adaptive tra-jectory tracking control of underactuated surface vessel in fields of marine practice[J]. Journal of Marine Science and Technology, 2018, 23 (4): 950- 957.
doi: 10.1007/s00773-017-0524-0
|
24 |
沈智鹏, 王茹. 基于DSC和MLP的欠驱动船舶自适应滑模轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40 (3): 643- 651.
|
|
SHEN Z P , WANG R . Adaptive sliding mode trajectory tracking control of underactuated ship based on DSC and MLP[J]. Systems Engineering and Electronics, 2018, 40 (3): 643- 651.
|
25 |
YI X L , LIU K , DIMAROGONAS D V , et al. Dynamic event-triggered and self-triggered control for multi-agent systems[J]. IEEE Trans.on Automatic Control, 2019, 64 (8): 3300- 3307.
doi: 10.1109/TAC.2018.2874703
|
26 |
YUAN Z Y , XIONG Y Y , SUN G H , et al. Event-triggered quantized communication-based consensus in multi-agent systems via sliding mode[J]. IEEE Trans.on Cybernetics, 2020,
doi: 10.1109/TCYB.2020.3017550
|
27 |
MCCUE L . Handbook of marine craft hydrodynamics and motion control[J]. IEEE Control Systems, 2016, 36 (1): 78- 79.
doi: 10.1109/MCS.2015.2495095
|
28 |
张国庆. 超恶劣海况下船舶运动简捷鲁棒自适应控制[D]. 大连: 大连海事大学, 2015.
|
|
ZHANG G Q. Concise robust adaptive control for ships under phenomenal sea states[D]. Dalian: Dalian Maritime University, 2015.
|
29 |
HUANG C F , ZHANG X K , ZHANG G Q . Improved decentralized finite-time formation control of under-actuated USVs via a novel disturbance observer[J]. Oceanic Engineering, 2019, 174 (2): 117- 124.
|
30 |
ZHANG G Q , YAO M Q , XU J H , et al. Robust neural event-triggered control for dynamic positioning ships with actuator faults[J]. Oceanic Engineering, 2020, 207 (1): 107292.
|